990 resultados para Bose-Einstein, Gas de


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theory Division Department of Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a quantum many body approach with van der Waal type of interaction to achieve (85)Rb Bose-Einstein condensate with tunable interaction which has been produced by magnetic field induced Feshbach resonance in the JILA experiment. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the experimental observation of vortex formation and production of tangled vortex distribution in an atomic BEC of (87)Rb atoms submitted to an external oscillatory perturbation. The oscillatory perturbations start by exciting quadrupolar and scissors modes of the condensate. Then regular vortices are observed finally evolving to a vortex tangle configuration. The vortex tangle is a signature of the presence of a turbulent regime in the cloud. We also show that this turbulent cloud has suppression of the aspect ratio inversion typically observed in quantum degenerate bosonic gases during free expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We observe experimentally a deviation of the radius of a Bose-Einstein condensate from the standard Thomas-Fermi prediction, after free expansion, as a function of temperature. A modified Hartree-Fock model is used to explain the observations, mainly based on the influence of the thermal cloud on the condensate cloud.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied a Bose-Einstein condensate of (87)Rb atoms under an oscillatory excitation. For a fixed frequency of excitation, we have explored how the values of amplitude and time of excitation must be combined in order to produce quantum turbulence in the condensate. Depending on the combination of these parameters different behaviors are observed in the sample. For the lowest values of time and amplitude of excitation, we observe a bending of the main axis of the cloud. Increasing the amplitude of excitation we observe an increasing number of vortices. The vortex state can evolve into the turbulent regime if the parameters of excitation are driven up to a certain set of combinations. If the value of the parameters of these combinations is exceeded, all vorticity disappears and the condensate enters into a different regime which we have identified as the granular phase. Our results are summarized in a diagram of amplitude versus time of excitation in which the different structures can be identified. We also present numerical simulations of the Gross-Pitaevskii equation which support our observations. (C) 2011 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the dynamics of Bose-Einstein condensates in symmetric double-well potentials following a sudden change of the potential from the Mott-insulator to the superfluid regime. We introduce a continuum approximation that maps that problem onto the wave-packet dynamics of a particle in an anharmonic effective potential. For repulsive two-body interactions the visibility of interference fringes that result from the superposition of the two condensates following a stage of ballistic expansion exhibits a collapse of coherent oscillations onto a background value whose magnitude depends on the amount of squeezing of the initial state. Strong attractive interactions are found to stabilize the relative number dynamics. We visualize the dynamics of the system in phase space using a quasiprobability distribution that allows for an intuitive interpretation of the various types of dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the photoassociation of Bose-Einstein condensed atoms into molecules using an optical cavity field. The driven cavity field introduces a dynamical degree of freedom into the photoassociation process, whose role in determining the stationary behavior has not previously been considered. The semiclassical stationary solutions for the atom and molecules as well as the intracavity field are found and their stability and scaling properties are determined in terms of experimentally controllable parameters including driving amplitude of the cavity and the nonlinear interactions between atoms and molecules. For weak cavity driving, we find a bifurcation in the atom and molecule number occurs that signals a transition from a stable steady state to nonlinear Rabi oscillations. For a strongly driven cavity, there exists bistability in the atom and molecule number.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electromagnetically induced transparency (EIT) is an important tool for controlling light propagation and nonlinear wave mixing in atomic gases with potential applications ranging from quantum computing to table top tests of general relativity. Here we consider EIT in an atomic Bose-Einstein condensate (BEC) trapped in a double-well potential. A weak probe laser propagates through one of the wells and interacts with atoms in a three-level Lambda configuration. The well through which the probe propagates is dressed by a strong control laser with Rabi frequency Omega(mu), as in standard EIT systems. Tunneling between the wells at the frequency g provides a coherent coupling between identical electronic states in the two wells, which leads to the formation of interwell dressed states. The macroscopic interwell coherence of the BEC wave function results in the formation of two ultranarrow absorption resonances for the probe field that are inside of the ordinary EIT transparency window. We show that these new resonances can be interpreted in terms of the interwell dressed states and the formation of a type of dark state involving the control laser and the interwell tunneling. To either side of these ultranarrow resonances there is normal dispersion with very large slope controlled by g. We discuss prospects for observing these ultranarrow resonances and the corresponding regions of high dispersion experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We predict the loss of superfluidity in a Bose-Einstein condensate in an axially symmetric harmonic trap alone during resonant collective oscillations via a classical dynamical transition. The forced resonant oscillation can be initiated by (a) periodic modulation of the atomic scattering length with a frequency that equals twice the radial trapping frequency or multiples thereof, or by (b) periodic modulation of the radial trapping potential with a frequency that equals the radial trapping frequency or multiples thereof. Suggestion for future experiment is made. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the axially-symmetric time-dependent Gross-Pitaevskii equation we study the phase coherence in a repulsive Bose-Einstein condensate (BEC) trapped by a harmonic and an one-dimensional optical lattice potential to describe the experiment by Cataliotti et al. on atomic Josephson oscillation [Science 293, 843 (2001)]. The phase coherence is maintained after the BEC is set into oscillation by a small displacement of the magnetic trap along the optical lattice. The phase coherence in the presence of oscillating neutral current across an array of Josephson junctions manifests in an interference pattern formed upon free expansion of the BEC. The numerical response of the system to a large displacement of the magnetic trap is a classical transition from a coherent superfluid to an insulator regime and a subsequent destruction of the interference pattern in agreement With the more recent experiment by Cataliotti et al. [New J. Phys. 5, 71 (2003)].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small deviations from purely bosonic behaviour of trapped atomic Bose-Einstein condensates are investigated with the help of the quon algebra, which interpolates between bosonic and fermionic statistics. A previously developed formalism is employed to obtain a generalized version of the Gross-Pitaeviskii equation. The depletion of the amount of condensed atoms for the case of repulsive forces between atoms in the trap can be accounted for by a universal fitting of the deformation parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate dynamical effects of a bright soliton in Bose-Einstein condensed (BEC) systems with local and smooth space variations of the two-body atomic scattering length. It includes a discussion about the possible observation of a new type of standing nonlinear atomic matter wave in cigar-type traps. A rich dynamics is observed in the interaction between the soliton and an inhomogeneity. By considering an analytical time-dependent variational approach and also full numerical simulation of one-dimensional and three-dimensional Gross-Pitaevskii equations, we study processes such as trapping, reflection and transmission of the bright matter soliton due to the impurity. We also derive conditions for the collapse of the bright solitary wave, considering a quasi-one-dimensional BEC with attractive local inhomogeneity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider formation of dissipationless shock waves in Bose-Einstein condensates with repulsive interaction between atoms. It is shown that for big enough initial inhomogeneity of density, interplay of nonlinear and dispersion effects leads to wave breaking phenomenon followed by generation of a train of dark solitons. Analytical theory is confirmed by numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the quantum coherent tunneling dynamics of two weakly coupled atomic-molecular Bose-Einstein condensates (AMBEC). A weak link is supposed to be provided by a double-well trap. The regions of parameters where the macroscopic quantum localization of the relative atomic population occurs are revealed. The different dynamical regimes are found depending on the value of nonlinearity, namely, coupled oscillations of population imbalance of atomic and molecular condensate, including irregular oscillations regions, and macroscopic quantum self trapping regimes. Quantum means and quadrature variances are calculated for population of atomic and molecular condensates and the possibility of quadrature squeezing is shown via stochastic simulations within P-positive phase space representation method. Linear tunnel coupling between two AMBEC leads to correlations in quantum statistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the explicit numerical solution of the axially symmetric Gross-Pitaevskii equation, we study the oscillation of the Bose-Einstein condensate (BEC) induced by a periodic variation in the atomic scattering length a. When the frequency of oscillation of a is an even multiple of the radial or axial trap frequency, respectively, the radial or axial oscillation of the condensate exhibits resonance with a novel feature. In this nonlinear problem without damping, at resonance in the steady state the amplitude of oscillation passes through a maximum and minimum. Such a growth and decay cycle of the amplitude may keep on repeating. Similar behaviour is also observed in a rotating BEC.