973 resultados para Boron doped diamond
Resumo:
The effect of variations in the composition for ternary catalysts of the type Pt-x(Ru-Ir)(1-x)/C on the methanol oxidation reaction in acid media for x values of 0.25, 0.50 and 0.75 is reported. The catalysts were prepared by the sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS) and energy dispersive X-ray (EDX) analyses. The nanometric character (2.8-3.2 nm) of the sol-gel deposits was demonstrated by XRD and TEM while EDX and AAS analyses showed that the metallic ratio in the compounds was very near to the expected one. Cyclic voltammograms for methanol oxidation revealed that the reaction onset occur at less positive potentials in all the ternary catalysts tested here when compared to a Pt-0.75-Ru-0.25/C (E-Tek) commercial composite. Steady-state polarization experiments (Tafel plots) showed that the Pt-0.25(Ru-Ir)(0.75)/C catalyst is the more active one for methanol oxidation as revealed by the shift of the reaction onset towards lower potentials. In addition, constant potential electrolyses suggest that the addition of Ru and Ir to Pt decreases the poisoning effect of the strongly adsorbed species generated during methanol oxidation. Consequently, the Pt-0.25 (Ru-Ir)(0.75)/C Composite catalyst is a very promising one for practical applications. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Carbon-supported platinum is commonly used as an anode electrocatalyst in low-temperature fuel cells fueled with methanol. The cost of Pt and the limited world supply are significant barriers for the widespread use of this type of fuel cell. Moreover, Pt used as anode material is readily poisoned by carbon monoxide produced as a byproduct of the alcohol oxidation. Although improvements in the catalytic performance for methanol oxidation were attained using Pt-Ru alloys, the state-of-the-art Pt-Ru catalyst needs further improvement because of relatively low catalytic activity and the high cost of noble Pt and Ru. For these reasons, the development of highly efficient ternary platinum-based catalysts is an important challenge. Thus, various compositions of ternary Pt(x)-(RuO(2)-M)(1-x)/C composites (M = CeO(2), MoO(3), or PbO(x)) were developed and further investigated as catalysts for the methanol electro-oxidation reaction. The characterization carried out by X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry point out that the different metallic oxides were successfully deposited on the Pt/C, producing small and well-controlled nanoparticles in the range of 2.8-4.2 nm. Electrochemical experiments demonstrated that the Pt(0.50)(RuO(2)-CeO(2))(0.50)/C composite displays the higher catalytic activity toward the methanol oxidation reaction (lowest onset potential of 207 mV and current densities taken at 450 mV, which are 140 times higher than those at commercial Pt/C), followed by the Pt(0.75)(RuO(2)-MoO(3))(0.25)/C composite. In addition, both of these composites produced low quantities of formic acid and formaldehyde when compared to a commercially available Pt(0.75)-Ru(0.25)/C composite (from E-Tek, Inc.), suggesting that the oxidation of methanol occurs mainly by a pathway that produces CO(2) forming the intermediary CO(ads).
Resumo:
In this work, the treatment of synthetic wastewaters containing Remazol Red BR (RRB) and Novacron Blue C-D (NB) by anodic oxidation using boron doped diamond anodes (BDD) and Novacron Yellow (YN) using BDD and Platinum (Pt) anodes was investigated. Galvanostatic electrolyses of RRB and NB synthetic wastewaters have led to the complete decolorization removal at different operating conditions (current density, pH and temperature). The influence of these parameters was investigated in order to find the best conditions for dyestuff colour removal. According to the experimental results obtained, the electrochemical oxidation process is suitable for decolorizing wastewaters containing these textile dyes, due to the electrocatalytic properties of BDD and Pt anode. Energy requirements for removing colour during galvanostatic electrolyses of RRB, NB and YN synthetic solutions depends mainly on the operating conditions; for example for RRB, it passes from 3.30 kWh m-3 at 20 mA cm-2 to 4.28 kWh m-3 at 60 mA cm-2 (pH = 1); 15.23 kWh m-3 at 20 mA cm-2 to 24.75 kWh m-3 at 60 mA cm-2 (pH = 4.5); 10.80 kWh m-3 at 20 mA cm-2 to 31.5 kWh m-3 at 60 mA cm-2 (pH = 8) (data estimated per volume of treated effluent). In order to verify the Brazilian law regulations of NB and RRB synthetic solutions after electrochemical decolourisation treatment, Hazen Units values were determined and the total colour removal was achieved; remaining into the regulations. Finally, electrical energy cost for removing colour was estimated
Resumo:
Many pollutants dumped in waterways, such as dyes and pesticides, have become so ubiquitous that they represent a serious threat to human health. The electrochemical oxidation is presented as an alternative clean, efficient and economic degradation of wastewater containing organic compounds and a number of advantages of this technique is to just not make use of chemical reagents, since only electrical energy is consumed during the removal of pollutants organic. However, despite being a promising alternative, still needs some tweaking in order to obtain better efficiency in the elimination of persistent pollutants. Thus, this study sought a relationship between a recently discovered phenomenon that reflects the participation of dissolved oxygen in solution in the electrochemical oxidation process, as an anomaly, present a kinetic model that shows instantaneous current efficiency (ICE) above 100% limited by theory, manifested for some experiments with phenolic compounds with H2SO4 or HClO4 as supporting electrolyte with electrodes under anodic oxidation on boron doped diamond (BDD). Therefore it was necessary to reproduce the data ICE exposes the fault model, and thus the 2-naphthol was used as phenolic compound to be oxidised at concentrations of 9, 12 and 15 mmol L-1, and H2SO4 and HClO4 to 1 mol L-1 as a supporting electrolyte under a current density of 30 mA cm-2 in an electrochemical reactor for continuous flow disk configuration, and equipped with anodes DDB at room temperature (25 oC). Experiments were performed using N2 like as purge gas for eliminate oxygen dissolved in solution so that its influence in the system was studied. After exposure of the anomaly of the ICE model and investigation of its relationship with dissolved O2, the data could be treated, making it possible for confirmation. But not only that, the data obtained from eletranálise and spectroscopic analysis suggest the involvement of other strongly oxidizing species (O3 (ozone) and O radicals and O2 -), since the dissolved O2 can be consumed during the formation of new strong oxidizing species, not considered until now, something that needs to be investigated by more accurate methods that we may know a little more of this system. Currently the performance of the electrocatalytic process is established by a complex interaction between different parameters that can be optimized, so it is necessary to the implementation of theoretical models, which are the conceptual lens with which researchers see
Resumo:
In this work a study was done using electrochemical cyclic voltammetry and differential pulse voltammetry for isoniazida (INH), ethambutol (EMB), rifampicina (RIF) and pyrazinamide (PZA) using the electrode boron-doped diamond (BDD) as working electrode. It also verified the applicability of the technique of differential pulse voltammetry in the quantification of the active compounds used in the treatment of tuberculosis, subsequently applying in samples of pharmaceutical formulation. Among the four active compounds studied, isoniazid showed the best results for the detection and quantification using differential pulse voltammetry. At pH 4 and pH 8, for the calibration curves to INH showed good linearity, with quantification limits of 6.15 mmol L-1 (0,844 ppm) and 4.08 mmol L-1 (0.560 ppm) for the respective pH. The proposed method can be used to determine drug isoniazid, for recovery values were obtained in approximately 100%
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
DEVELOPMENT AND EVALUATION OF GAS DIFFUSION ELECTRODES (GDE) FOR GENERATION OF H2O2 IN SITU AND THEIR APPLICATION IN THE DEGRADATION OF REACTIVE BLUE 19 DYE. This work reports the development of GDE for electrogeneration of H2O2 and their application in the degradation process of Reactive Blue 19 dye. GDE produced by carbon black with 20% polytetrafluoroethylene generated up to 500 mg L-1 of H2O2 through the electrolysis of acidic medium at -0.8 V vs Ag/AgCl. Reactive Blue 19 dye was degraded most efficiently with H2O2 electrogenerated in the presence of Fe(II) ions, leading to removal of 95% of the original color and 39% of TOC at -0.8 V vs Ag/AgCl.
Resumo:
One of the key objectives in fuel cell technology is to reduce Pt loading by the improvement of its catalytic activity towards alcohol oxidation. Here, a sol-gel based method was used to prepare ternary and quaternary carbon supported nanoparticles by combining Pt-Ru with Mo, Ta, Pb, Rh or Ir, which were used as electro-catalysts for the methanol and ethanol oxidation reactions in acid medium. Structural characterization performed by XRD measurements revealed that crystalline structures with crystallites ranging from 2.8 to 4.1 nm in size and with different alloy degrees were produced. Tantalum and lead deposited as a heterogeneous mixture of oxides with different valences resulting in materials with complex structures. The catalysts activities were evaluated by cyclic voltammetry and by Tafel plots and the results showed that the activity towards methanol oxidation was highly dependent of the alloy degree, while for ethanol the presence of a metal capable to promote the break of C-C bond, such as Rh, was necessary for a good performance. Additionally, the catalysts containing of TaOx or PbOx resulted in the best materials due to different effects: the hi-functional mechanism promoted by TaOx and a better dispersion of the catalysts constituents promoted by PbOx. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Propõe-se método novo e completo para análise de acetona em ar exalado envolvendo coleta com pré-concentração em água, derivatização química e determinação eletroquímica assistida por novo algoritmo de processamento de sinais. Na literatura recente a acetona expirada vem sendo avaliada como biomarcador para monitoramento não invasivo de quadros clínicos como diabetes e insuficiência cardíaca, daí a importância da proposta. Entre as aminas que reagem com acetona para formar iminas eletroativas, estudadas por polarografia em meados do século passado, a glicina apresentou melhor conjunto de características para a definição do método de determinação por voltametria de onda quadrada sem a necessidade de remoção de oxigênio (25 Hz, amplitude de 20 mV, incremento de 5 mV, eletrodo de gota de mercúrio). O meio reacional, composto de glicina (2 mol·L-1) em meio NaOH (1 mol·L-1), serviu também de eletrólito e o pico de redução da imina em -1,57 V vs. Ag|AgCl constituiu o sinal analítico. Para tratamento dos sinais, foi desenvolvido e avaliado um algoritmo inovador baseado em interpolação de linha base por ajuste de curvas de Bézier e ajuste de gaussiana ao pico. Essa combinação permitiu reconhecimento e quantificação de picos relativamente baixos e largos sobre linha com curvatura acentuada e ruído, situação em que métodos convencionais falham e curvas do tipo spline se mostraram menos apropriadas. A implementação do algoritmo (disponível em http://github.com/batistagl/chemapps) foi realizada utilizando programa open source de álgebra matricial integrado diretamente com software de controle do potenciostato. Para demonstrar a generalidade da extensão dos recursos nativos do equipamento mediante integração com programação externa em linguagem Octave (open source), implementou-se a técnica da cronocoulometria tridimensional, com visualização de resultados já tratados em projeções de malha de perspectiva 3D sob qualquer ângulo. A determinação eletroquímica de acetona em fase aquosa, assistida pelo algoritmo baseado em curvas de Bézier, é rápida e automática, tem limite de detecção de 3,5·10-6 mol·L-1 (0,2 mg·L-1) e faixa linear que atende aos requisitos da análise em ar exalado. O acetaldeído, comumente presente em ar exalado, em especial, após consumo de bebidas alcoólicas, dá origem a pico voltamétrico em -1,40 V, contornando interferência que prejudica vários outros métodos publicados na literatura e abrindo possibilidade de determinação simultânea. Resultados obtidos com amostras reais são concordantes com os obtidos por método espectrofotométrico, em uso rotineiro desde o seu aperfeiçoamento na dissertação de mestrado do autor desta tese. Em relação à dissertação, também se otimizou a geometria do dispositivo de coleta, de modo a concentrar a acetona num volume menor de água gelada e prover maior conforto ao paciente. O método completo apresentado, englobando o dispositivo de amostragem aperfeiçoado e o novo e efetivo algoritmo para tratamento automático de sinais voltamétricos, está pronto para ser aplicado. Evolução para um analisador portátil depende de melhorias no limite de detecção e facilidade de obtenção eletrodos sólidos (impressos) com filme de mercúrio, vez que eletrodos de bismuto ou diamante dopado com boro, entre outros, não apresentaram resposta.
Resumo:
The textile industry is one of the most polluting in the world (AHMEDCHEKKAT et al. 2011), generating wastewater with high organic loading. Among the pollutants present in these effluents are dyes, substances with complex structures, toxic and carcinogenic characteristics, besides having a strong staining. Improper disposal of these substances to the environment, without performing a pre-treatment can cause major environmental impacts. The objective this thesis to use a technique of electrochemical oxidation of boron doped diamond anode, BDD, for the treatment of a synthetic dye and a textile real effluent. In addition to studying the behavior of different electrolytes (HClO4, H3PO4, NaCl and Na2SO4) and current densities (15, 60, 90 and 120 mA.cm-2 ), and compare the methods with Rhodamine B (RhB) photolysis, electrolysis and photoelectrocatalytic using H3PO4 and Na2SO4. Electrochemical oxidation studies were performed in different ratio sp3 /sp2 of BDD with solution of RhB. To achieve these objectives, analysis of pH, conductivity, UV-visible, TOC, HPLC and GC-MS were developed. Based on the results with the Rhodamine B, it was observed that in all cases occurred at mineralization, independent of electrolyte and current density, but these parameters affect the speed and efficiency of mineralization. The radiation of light was favorable during the electrolysis of RhB with phosphate and sulfate. Regarding the oxidation in BDD anode with different ratio sp3 /sp2 (165, 176, 206, 220, 262 e 329), with lower carbon-sp3 had a longer favoring the electrochemical conversion of RhB, instead of combustion. The greater the carbon content on the anodes BDD took the biggest favor of direct electrochemical oxidation
Resumo:
In this work, the treatment of wastewater from the textile industry, containing dyes as Yellow Novacron (YN), Red Remazol BR (RRB) and Blue Novacron CD (NB), and also, the treatment of wastewater from petrochemical industry (produced water) were investigated by anodic oxidation (OA) with platinum anodes supported on titanium (Ti/Pt) and boron-doped diamond (DDB). Definitely, one of the main parameters of this kind of treatment is the type of electrocatalytic material used, since the mechanisms and products of some anodic reactions depend on it. The OA of synthetic effluents containing with RRB, NB and YN were investigated in order to find the best conditions for the removal of color and organic content of the dye. According to the experimental results, the process of OA is suitable for decolorization of wastewaters containing these textile dyes due to electrocatalytic properties of DDB and Pt anodes. Removal of the organic load was more efficient at DDB, in all cases; where the dyes were degraded to aliphatic carboxylic acids at the end of the electrolysis. Energy requirements for the removal of color during OA of solutions of RRB, NB and YN depends mainly on the operating conditions, for example, RRB passes of 3.30 kWh m-3 at 20 mA cm-2 for 4.28 kWh m-3 at 60 mA cm-2 (pH = 1); 15.23 kWh m-3 at 20 mA cm-2 to 24.75 kWh m-3 at 60 mA cm-2 (pH 4.5); 10.80 kWh m-3 at 20 mA cm-2 to 31.5 kWh m-3 at 60 mA cm-2 (pH = 8) (estimated data for volume of treated effluent). On the other hand, in the study of OA of produced water effluent generated by petrochemical industry, galvanostatic electrolysis using DDB led to the complete removal of COD (98%), due to large amounts of hydroxyl radicals and peroxodisulphates generated from the oxidation of water and sulfates in solution, respectively. Thus, the rate of COD removal increases with increasing applied current density (15-60 mAcm-2 ). Moreover, at Pt electrode, approximately 50% removal of the organic load was achieved by applying from 15 to 30 mAcm-2 while 80% of COD removal was achieved for 60 mAcm-2 . Thus, the results obtained in the application of this technology were satisfactory depending on the electrocatalytic materials and operating conditions used for removal of organic load (petrochemical and textile effluents) as well as for the removal of color (in the case of textile effluents). Therefore, the applicability of electrochemical treatment can be considered as a new alternative like pretreatment or treatment of effluents derived from textiles and petrochemical industries.
Resumo:
Electrochemical technologies have been proposed as a promising alternative for the treatment of effluents and contaminated soils. Therefore, the objective of this work was to study the treatment of contaminated soils and wastewaters using electrochemical technologies. Thus, the study regarding the scale-up of the electrochemical system with continuous flow treatment of wastewater of the petrochemical industry was investigated using platinum electrodes supported on titanium (Ti / Pt), and boron-doped diamond (BDD). The results clearly showed that under the operating conditions studied and electrocatalytic materials employed, the better removal efficiency was achieved with BDD electrode reducing the chemical oxygen demand (COD) from 2746 mg L-1 to 200 mg L-1 in 5 h consuming 56.2 kWh m-3 . The decontamination of soils and effluents by petrochemical products was evaluated by studying the effects of electrokinetic remediation for removal of total petroleum hydrocarbons (HTP) from contaminated soil with diesel. The efficiency of this process was dependent on the electrolyte used Na2SO4 (96.46%), citric acid (81.36%) and NaOH (68.03%) for 15 days. Furthermore, the effluent after treatment of the soil was treated by electrochemical oxidation, achieving a good elimination of the organic polluting load dissolved. Depending on the physical behavior of wastewater contaminated with oil (emulsified state); atrazine emulsified effluents were investigated. The main characteristics of the effluent produced during the washing of contaminated soil were studied, being dependent on the surfactant dosage used; which determined its electrolytic treatment with BDD. The electrochemical oxidation of emulsified effluent of atrazine was efficient, but the key to the treatment is reducing the size of micelles.
Resumo:
The treatment of wastewater is essential to human health. One of the most important steps is the disinfection treatment which uses chlorine to eliminate bacteria as required by environmental agencies. However, the identification of potentially toxic byproducts generated by this method, such as trihalomethanes, has stimulated the development of new alternative disinfection technologies. Among them, heterogeneous photocatalysis, TiO2 photocatalysis and electrochemical disinfection are considered suitable alternatives to the chlorination method. Thus, the present dissertation analyzes the evolution of active chlorine species in a synthetic NaCl solution and it is tested to treat a synthetic solution of the dye Reactive Blue 19 using boron-doped diamond (BDD) and ruthenium oxide (Ti/Ru0.3Ti0.7O2) as anodes. The indirect electrochemical process was discussed in terms of mineralization of the total organic load and percentage of color removal in order to evaluate the applicability of electrochemical technology. Electrochemical experiments were carried out with different current densities (25, 50 and 75 mA.cm-2) during 120 minutes. On the other hand, other important parameter in this study was the influence of the proportion sp3/sp2 on BDD anode on the performance of the evolution of active chlorine species which was investigated by electrolytic techniques (linear polarization), with the intention of determining the related training oxidizing species and consumption energy to chemical or electrochemical reactions. From the results, it can be noted that the BDD electrode showed better efficiency throughout the electrochemical process.
Resumo:
The treatment of wastewater is essential to human health. One of the most important steps is the disinfection treatment which uses chlorine to eliminate bacteria as required by environmental agencies. However, the identification of potentially toxic byproducts generated by this method, such as trihalomethanes, has stimulated the development of new alternative disinfection technologies. Among them, heterogeneous photocatalysis, TiO2 photocatalysis and electrochemical disinfection are considered suitable alternatives to the chlorination method. Thus, the present dissertation analyzes the evolution of active chlorine species in a synthetic NaCl solution and it is tested to treat a synthetic solution of the dye Reactive Blue 19 using boron-doped diamond (BDD) and ruthenium oxide (Ti/Ru0.3Ti0.7O2) as anodes. The indirect electrochemical process was discussed in terms of mineralization of the total organic load and percentage of color removal in order to evaluate the applicability of electrochemical technology. Electrochemical experiments were carried out with different current densities (25, 50 and 75 mA.cm-2) during 120 minutes. On the other hand, other important parameter in this study was the influence of the proportion sp3/sp2 on BDD anode on the performance of the evolution of active chlorine species which was investigated by electrolytic techniques (linear polarization), with the intention of determining the related training oxidizing species and consumption energy to chemical or electrochemical reactions. From the results, it can be noted that the BDD electrode showed better efficiency throughout the electrochemical process.