999 resultados para Boric acid.
Resumo:
In recent years studies concerning the applications of lignocellulosic/ inorganic couples have resulted in the development of an interesting class of functional materials. In this work a cellulose/NbOPO 4.nH 2O hybrid using cellulose from surgacane bagasse was prepared and characterized in order to test for adsorption applications. The preparation process was conducted by carrying out metallic niobium dilution in hydrofluoric acid in the presence of nitric acid, then adding boric acid to form the complex and, finally, the cellulose sugar cane bagasse was added. Concentrated phosphoric acid was also inserted to precipitate hydrous niobium phosphate particles in the cellulose fiber. This material was characterized by X-ray diffractometry (XRD), thermogravimetry (TG/DTG), and scanning electronic microscopy (SEM) connected to an energy dispersive spectrophotometer (EDS). Results by SEM/EDS show that NbOPO 4.nH 2O was present in structure of the cellulose. During the preparation of the material, using boric acid it was observed that the formation of precipitate occurred in a shorter time than the material prepared without boric acid.
Resumo:
Objectives: This study aimed to measure pH changes during 14 days intracoronal bleaching with hydrogen peroxide/sodium perborate and carbamide peroxide/sodium perborate. Materials and methods: Twenty patients presenting endodontically treated central maxillary incisors with color alterations were divided in two groups (n = 10): Group CP + SP: 37% carbamide peroxide + sodium perborate paste; Group HP + SP: 30% hydrogen peroxide + sodium perborate paste. The pH values were measured using a digital microprocessor at different times: Baseline, 2, 7 and 14 days. Data were analyzed with two-way ANOVA followed by Tukey's test (α = 0.05). Results: ANOVA showed p < 0.00 which indicated significant difference between the groups. The mean values (± sd) and the results of the Tukey's test were: HP + SP/14 days-7.98 (±0.58)a; HP + SP/7 days-8.59 (±0.18)b; HP + SP/2 days-8.83 (±0.32)bc; HP + SP/Baseline-8.83 (±0.01)bc; CP + SP/Baseline-8.89 (±0.01)bc; CP + SP/14 days-9.11 (±0.58)cd; CP + SP/7 days-9.54 (±0.16)de; CP + SP/2 days-9.66 (±0.08) de. The group HP + SP resulted in significantly lower pH values compared with group CP + SP. Conclusion: It can be concluded that both associations showed alkaline pH values; however, there was significant reduction in the pH values of the 30% hydrogen peroxide associated with sodium perborate after 14 days. Clinical Significance: The association of hydrogen peroxide and carbamide peroxide with sodium perborate paste presented alkaline characteristics during the 14-day evaluated period. Thus, regarding pH changes, both associations can be considered safe as intracoronal bleaching agents.
Resumo:
Urease inhibitor (UI) and nitrification inhibitor (NI) have the potential to improve N-use efficiency of applied urea and minimize N losses via gaseous emissions of ammonia (NH 3) to the atmosphere and nitrate (NO3-) leaching into surface and ground water bodies. There is a growing interest in the formulations of coating chemical fertilizers with both UI and NI. However, limited information is available on the combined use of UI and NI applied with urea fertilizer. Therefore the aim of this study was to investigate the effects of treating urea with both UI and NI to minimize NH 3 volatilization. Two experiments were set up in volatilization chambers under controlled conditions to examine this process. In the first experiment, UR was treated with the urease inhibitor NBPT [N-(n-butyl) thiophosphoric acid triamide] at a rate of 1060 mg kg -1 urea and/or with the nitrification inhibitor DCD (dicyandiamide) at rates equivalent to 5 or 10% of the urea N. A randomized experimental design with five treatments and five replicates was used: 1) UR, 2) UR + NBPT, 3) UR + DCD 10%, 4) UR + NBPT + DCD 5%, and 5) UR + NBPT + DCD 10%. The fertilizer treatments were applied to the surface of an acidic Red Latosol soil moistened to 60% of the maximum water retention and placed inside volatilization chambers. Controls chambers were added to allow for NH 3 volatilized from unfertilized soil or contained in the air that swept over the soil surface. The second experiment had an additional treatment with surface-applied DCD. The chambers were glass vessels (1.5 L) fit with air inlet and outlet tubings to allow air to pass over the soil. Ammonia volatilized was swept and carried to a flask containing a boric acid solution to trap the gas and then measured daily by titration with a standardized H 2SO 4 solution. Continuous measurements were recorded for 19 and 23 days for the first and second experiment, respectively. The soil samples were then analyzed for UR-, NH4+-, and NO3--N. Losses of NH 3 by volatilization with unamended UR ranged from 28 to 37% of the applied N, with peak of losses observed the third day after fertilization. NBPT delayed the peak of NH 3 losses due to urease inhibition and reduced NH 3 volatilization between 54 and 78% when compared with untreated UR. Up to 10 days after the fertilizer application, NH 3 losses had not been affected by DCD in the UR or the UR + NBPT treatments; thereafter, NH 3 volatilization tended to decrease, but not when DCD was present. As a consequence, the addition of DCD caused a 5-16% increase in NH 3 volatilization losses of the fertilizer N applied as UR from both the UR and the UR + NBPT treatments. Because the effectiveness of NBPT to inhibit soil urease activity was strong only in the first week, it could be concluded that DCD did not affect the action of NBPT but rather, enhanced volatilization losses by maintaining higher soil NH4+ concentration and pH for a longer time. Depending on the combination of factors influencing NH 3 volatilization, DCD could even offset the beneficial effect of NBPT in reducing NH 3 volatilization losses. © 2012 Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)