980 resultados para Bone regeneration, Mechanobiology, In vitro models, Fluid shear stress, Substrate stretch


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Root conditioning is aimed at smear layer removal and at dental matrix collagen exposure, which may promote periodontal regeneration. This in vitro study assessed smear layer removal, collagen fiber exposure and the influence of PRP (platelet-rich plasma) application on adhesion of blood cells to the root surface using scanning electron microscopy (SEM). Materials and methods: Scaled root samples (n = 160) were set in five groups and conditioned with: group I - control group (saline solution); group II (EDTA 24%); group III (citric acid 25%); group IV (tetracycline hydrochloride 50 mg/ml); group V (sodium citrate 30%). Eighty samples were assessed using the root surface modification index (RSMI). The other eighty samples were set in two groups. The first group (n = 40) received PRP gel application with a soft brush and the second group (n = 40) received PRP application and then a blood drop. The fibrin clot formation was assessed in the first group and the blood cells adhesion was assessed in the second group using the BEAI (blood elements adhesion index). A previously trained, calibrated, and blind examiner evaluated photomicrographs. Statistical analysis was performed using the Kruskal-Wallis's and Dunn's tests. Results: Group III attained the best results for RSMI and BEAI. Moreover, it was the only group showing fibrin clot formation. Conclusion: Citric acid was the most efficient conditioner for smear layer removal, collagen fiber exposure and blood cell adhesion. Moreover, it was the only group showing fibrin clot formation after PRP application. Clinical significance: This study demonstrated that root conditioning followed by PRP application may favor blood cell adhesion on root surface which may optimize periodontal healing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study compared dentine demineralization induced by in vitro and in situ models, and correlated dentine surface hardness (SH), cross-sectional hardness (CSH) and mineral content by transverse microradiography (TMR). Bovine dentine specimens (n = 15/group) were demineralized in vitro with the following: MC gel (6% carboxymethylcellulose gel and 0.1 m lactic acid, pH 5.0, 14 days); buffer I (0.05 m acetic acid solution with calcium, phosphate and fluoride, pH 4.5, 7 days); buffer II (0.05 m acetic acid solution with calcium and phosphate, pH 5.0, 7 days), and TEMDP (0.05 m lactic acid with calcium, phosphate and tetraethyl methyl diphosphonate, pH 5.0, 7 days). In an in situ study, 11 volunteers wore palatal appliances containing 2 bovine dentine specimens, protected with a plastic mesh to allow biofilm development. The volunteers dripped a 20% sucrose solution on each specimen 4 times a day for 14 days. In vitro and in situ lesions were analyzed using TMR and statistically compared by ANOVA. TMR and CSH/SH were submitted to regression and correlation analysis (p < 0.05). The in situ model produced a deep lesion with a high R value, but with a thin surface layer. Regarding the in vitro models, MC gel produced only a shallow lesion, while buffers I and II as well as TEMDP induced a pronounced subsurface lesion with deep demineralization. The relationship between CSH and TMR was weak and not linear. The artificial dentine carious lesions induced by the different models differed significantly, which in turn might influence further de- and remineralization processes. Hardness analysis should not be interpreted with respect to dentine mineral loss

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NHA2 was recently identified as a novel sodium/hydrogen exchanger which is strongly upregulated during RANKL-induced osteoclast differentiation. Previous in vitro studies suggested that NHA2 is a mitochondrial transporter required for osteoclast differentiation and bone resorption. Due to the lack of suitable antibodies, NHA2 was studied only on RNA level thus far. To define the protein's role in osteoclasts in vitro and in vivo, we generated NHA2-deficient mice and raised several specific NHA2 antibodies. By confocal microscopy and subcellular fractionation studies, NHA2 was found to co-localize with the late endosomal and lysosomal marker LAMP1 and the V-ATPase a3 subunit, but not with mitochondrial markers. Immunofluorescence studies and surface biotinylation experiments further revealed that NHA2 was highly enriched in the plasma membrane of osteoclasts, localizing to the basolateral membrane of polarized osteoclasts. Despite strong upregulation of NHA2 during RANKL-induced osteoclast differentiation, however, structural parameters of bone, quantified by high-resolution microcomputed tomography, were not different in NHA2-deficient mice compared to wild-type littermates. In addition, in vitro RANKL stimulation of bone marrow cells isolated from wild-type and NHA2-deficient mice yielded no differences in osteoclast development and activity. Taken together, we show that NHA2 is a RANKL-induced plasmalemmal sodium/hydrogen exchanger in osteoclasts. However, our data from NHA2-deficient mice suggest that NHA2 is dispensable for osteoclast differentiation and bone resorption both in vitro and in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the many proposed advantages related to nanotechnology, there are increasing concerns as to the potential adverse human health and environmental effects that the production of, and subsequent exposure to nanoparticles (NPs) might pose. In regard to human health, these concerns are founded upon the plethora of knowledge gained from research relating to the effects observed following exposure to environmental air pollution. It is known that increased exposure to environmental air pollution can cause reduced respiratory health, as well as exacerbate pre-existing conditions such as cardiovascular disease and chronic obstructive pulmonary disease. Such disease states have also been associated with exposure to the NP component contained within environmental air pollution, raising concerns as to the effects of NP exposure. It is not only exposure to accidentally produced NPs however, which should be approached with caution. Over the past decades, NPs have been specifically engineered for a wide range of consumer, industrial and technological applications. Due to the inevitable exposure of NPs to humans, owing to their use in such applications, it is therefore imperative that an understanding of how NPs interact with the human body is gained. In vivo research poses a beneficial model for gaining immediate and direct knowledge of human exposure to such xenobiotics. This research outlook however, has numerous limitations. Increased research using in vitro models has therefore been performed, as these models provide an inexpensive and high-throughput alternative to in vivo research strategies. Despite such advantages, there are also various restrictions in regard to in vitro research. Therefore, the aim of this review, in addition to providing a short perspective upon the field of nanotoxicology, is to discuss (1) the advantages and disadvantages of in vitro research and (2) how in vitro research may provide essential information pertaining to the human health risks posed by NP exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ADAMTS1 inhibits capillary sprouting, and since capillary sprouts do not experience the shear stress caused by blood flow, this study undertook to clarify the relationship between shear stress and ADAMTS1. It was found that endothelial cells exposed to shear stress displayed a strong upregulation of ADAMTS1, dependent upon both the magnitude and duration of their exposure. Investigation of the underlying pathways demonstrated involvement of phospholipase C, phosphoinositide 3-kinase, and nitric oxide. Forkhead box protein O1 was identified as a likely inhibitor of the system, as its knockdown was followed by a slight increase in ADAMTS1 expression. In silico prediction displayed a transcriptional binding site for Forkhead box protein O1 in the promotor region of the ADAMTS1 gene, as well as sites for nuclear factor 1, SP1, and AP-1. The anti-angiogenic effects of ADAMTS1 were attributed to its cleavage of thrombospondin 1 into a 70-kDa fragment, and a significant enhancement of this fragment was indeed demonstrated by immunoblotting shear stress-treated cells. Accordingly, scratch wound closure displayed a slowdown in conditioned medium from shear stress-treated endothelial cells, an effect that could be completely blocked by a knockdown of thrombospondin 1 and partially blocked by a knockdown of ADAMTS1. Non-perfused capillary sprouts in rat mesenteries stained negative for ADAMTS1, while vessels in the microcirculation that had already experienced blood flow yielded the opposite results. The shear stress-dependent expression of ADAMTS1 in vitro was therefore also demonstrated in vivo and thereby confirmed as a mechanism connecting blood flow with the regulation of angiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrahepatic cholestasis of pregnancy may be complicated by fetal arrhythmia, fetal hypoxia, preterm labor, and, in severe cases, intrauterine death. The precise etiology of fetal death is not known. However, taurocholate has been demonstrated to cause arrhythmia and abnormal calcium dynamics in cardiomyocytes. To identify the underlying reason for increased susceptibility of fetal cardiomyocytes to arrhythmia, we studied myofibroblasts (MFBs), which appear during structural remodeling of the adult diseased heart. In vitro, they depolarize rat cardiomyocytes via heterocellular gap junctional coupling. Recently, it has been hypothesized that ventricular MFBs might appear in the developing human heart, triggered by physiological fetal hypoxia. However, their presence in the fetal heart (FH) and their proarrhythmogenic effects have not been systematically characterized. Immunohistochemistry demonstrated that ventricular MFBs transiently appear in the human FH during gestation. We established two in vitro models of the maternal heart (MH) and FH, both exposed to increasing doses of taurocholate. The MH model consisted of confluent strands of rat cardiomyocytes, whereas for the FH model, we added cardiac MFBs on top of cardiomyocytes. Taurocholate in the FH model, but not in the MH model, slowed conduction velocity from 19 to 9 cm/s, induced early after depolarizations, and resulted in sustained re-entrant arrhythmias. These arrhythmic events were prevented by ursodeoxycholic acid, which hyperpolarized MFB membrane potential by modulating potassium conductance. CONCLUSION: These results illustrate that the appearance of MFBs in the FH may contribute to arrhythmias. The above-described mechanism represents a new therapeutic approach for cardiac arrhythmias at the level of MFB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medical literature regularly reports on accidental poisoning in children after aspiration of combustibles such as lamp oils which usually contain hydrocarbons or rape methyl esters (RMEs). We aimed to analyze the toxic potential of alkanes and different combustible classes in vitro with regard to biologic responses and mechanisms mediating toxicity. Two different in vitro models were used, i.e. (i) a captive bubble surfactometer (CBS) to assess direct influence of combustibles on biophysical properties of surfactant film and (ii) cell cultures (BEAS-2B and R3/1 cells, primary macrophages, re-differentiated epithelia) closely mimicking the inner lung surface. Biological endpoints included cell viability, cytotoxicity and inflammatory mediator release. CBS measurements demonstrate that combustibles affect film dynamics, i.e. the surface tension/area characteristics during compression and expansion, in a dose and molecular chain length dependent manner. Cell culture results confirm the dose dependent toxicity. Generally, cytotoxicity and cytokine release are higher in short-chained alkanes and hydrocarbon-based combustibles than in long-chained substances, e.g. highest inducible cytotoxicity in BEAS-2B was for hexane 84.6%, decane 74% and hexadecane 30.8%. Effects of RME-based combustibles differed between the cell models. Our results confirm data from animal experiments and give new insights into the mechanisms underlying the adverse health effects observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified Astra type multistage liquid impinger (MSLI) with integrated bronchial cell monolayers was used to study deposition and subsequent drug absorption on in vitro models of the human airway epithelial barrier. Inverted cell culture of Calu-3 cells on the bottom side of cell culture filter inserts was integrated into a compendial MSLI. Upside down cultivation did not impair the barrier function, morphology and viability of Calu-3 cells. Size selective deposition with subsequent absorption was studied for three different commercially available dry powder formulations of salbutamol sulphate and budesonide. After deposition without size separation the absorption rates from the aerosol formulations differed but correlated with the size of the carrier lactose particles. However, after deposition in the MSLI, simulating relevant impaction and causing the separation of small drug crystals from the carrier lactose, the absorption rates of the three formulations were identical, confirming the bioequivalence of the three formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Blood-brain barrier (BBB) breakdown is an early event in the pathogenesis of multiple sclerosis (MS). In a previous study we have found a direct stabilization of barrier characteristics after treatment of bovine brain capillary endothelial cells (BCECs) with human recombinant interferon-beta-1a (IFN-beta-1a) in an in vitro BBB model. In the present study we examined the effect of human recombinant IFN-beta-1a on the barrier properties of BCECs derived from four different species including humans to predict treatment efficacy of IFN-beta-1a in MS patients. METHODS: We used primary bovine and porcine BCECs, as well as human and murine BCEC cell lines. We investigated the influence of human recombinant IFN-beta-1a on the paracellular permeability for 3H-inulin and 14C-sucrose across monolayers of bovine, human, and murine BCECs. In addition, the transendothelial electrical resistance (TEER) was determined in in vitro systems applying porcine and murine BCECS. RESULTS: We found a stabilizing effect on the barrier characteristics of BCECs after pretreatment with IFN-beta-1a in all applied in vitro models: addition of IFN-beta-1a resulted in a significant decrease of the paracellular permeability across monolayers of human, bovine, and murine BCECs. Furthermore, the TEER was significantly increased after pretreatment of porcine and murine BCECs with IFN-beta-1a. CONCLUSION: Our data suggest that BBB stabilization by IFN-beta-1a may contribute to its beneficial effects in the treatment of MS. A human in vitro BBB model might be useful as bioassay for testing the treatment efficacy of drugs in MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The free-living amoeba Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis (PAM), a disease leading to death in the vast majority of cases. In patients suffering from PAM, and in corresponding animal models, the brain undergoes a massive inflammatory response, followed by haemorrhage and severe tissue necrosis. Both, in vivo and in vitro models are currently being used to study PAM infection. However, animal models may pose ethical issues, are dependent upon availability of specific infrastructural facilities, and are time-consuming and costly. Conversely, cell cultures lack the complex organ-specific morphology found in vivo, and thus, findings obtained in vitro do not necessarily reflect the situation in vivo. The present study reports infection of organotypic slice cultures from rat brain with N. fowleri and compares the findings in this culture system with in vivo infection in a rat model of PAM, that proved complementary to that of mice. We found that brain morphology, as present in vivo, is well retained in organotypic slice cultures, and that infection time-course including tissue damage parallels the observations in vivo in the rat. Therefore, organotypic slice cultures from rat brain offer a new in vitro approach to study N. fowleri infection in the context of PAM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Bovine besnoitiosis, caused by the protozoan Besnoitia besnoiti, reduces productivity and fertility of affected herds. Besnoitiosis continues to expand in Europe and no effective control tools are currently available. Experimental models are urgently needed. Herein, we describe for the first time the kinetics of standardised in vitro models for the B. besnoiti lytic cycle. This will aid to study the pathogenesis of the disease, in the screening for vaccine targets and drugs potentially useful for the treatment of besnoitiosis. Methods We compared invasion and proliferation of one B. tarandi (from Finland) and seven B. besnoiti isolates (Bb-Spain1, Bb-Spain2, Bb-Israel, Bb-Evora03, Bb-Ger1, Bb-France, Bb-Italy2) in MARC-145 cell culture. Host cell invasion was studied at 4, 6, 8 and 24 h post infection (hpi), and proliferation characteristics were compared at 24, 48, 72, 96, 120, and 144 hpi. Results In Besnoitia spp., the key parameters that determine the sequential adhesion-invasion, proliferation and egress steps are clearly distinct from those in the related apicomplexans Toxoplasma gondii and Neospora caninum. Besnoitia spp. host cell invasion is a rather slow process, since only 50 % of parasites were found intracellular after 3–6 h of exposure to host cells, and invasion still took place after 24 h. Invasion efficacy was significantly higher for Bb-France, Bb-Evora03 and Bb-Israel. In addition, the time span for endodyogeny to take place was as long as 18–35 h. Bb-Israel and B. tarandi isolates were most prolific, as determined by the tachyzoite yield at 72 hpi. The total tachyzoite yield could not be predicted neither by invasion-related parameters (velocity and half time invasion) nor by proliferation parameters (lag phase and doubling time (dT)). The lytic cycle of Besnoitia was asynchronous as evidenced by the presence of three different plaque-forming tachyzoite categories (lysis plaques, large and small parasitophorous vacuoles). Conclusions This study provides first insights into the lytic cycle of B. besnoiti isolates and a standardised in vitro model that allows screening of drug candidates for the treatment of besnoitiosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natural selection of anticoagulant resistant rats has resulted in a need for an alternative to anticoagulant rodenticides which differs in both active ingredient and in the method of dosing. Cholecalciferol toxicity to rodents using the dermal route is demonstrated using a variety of penetration enhancing formulations in two in-vitro models and finally in-vivo. A 1 ml dose of 50/50 (v/v) DMSO/ethanol containing 15% (v/v) PEG 200 and 20% (w/v) cholecalciferol was judged as 'sufficiently effective' in line with the European Union's Biocidal Products Regulation (No. 528/2012) during in-vivo studies. This dose was found to cause 100% mortality in a rat population in 64.4 h (±22 h).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

De nouveaux modèles cellulaires in vitro par transfert de milieu et par coculture ont été mis au point afin d’évaluer la capacité des HDL à éliminer l’excès de cholestérol des tissus périphériques et de le transporter vers le foie afin d’être excrété par le foie, un processus nommé le transport inverse du cholestérol (TIC). Le système cellulaire par transfert in vitro où des macrophages J774 sont gorgés de LDL acétylées et marqués au 3H-cholestérol a été préalablement établi afin de mesurer par scintillation l’efflux de cholestérol marqué vers le milieu de culture contenant des accepteurs de cholestérol. Ce milieu conditionné est transféré sur des cellules HepG2 afin d’étudier l’influx du cholestérol marqué. Ce dernier nous permet d’observer un transport de cholestérol de 25 % hors des J774 et un transport de 39 000 cpm dans les HepG2 en utilisant un milieu contenant 2 % de sérums humains mis en commun. Une stimulation des cellules J774 par l’AMPc augmente l’efflux et l’influx d’environ 45 %. Des tests de preuve de concept ont été effectués sur le système cellulaire par co-culture qui utilise des chambres de Boyden où les J774 sont localisées au fond d’un puits et les HepG2 dans un insert, et où le milieu est partagé entre les deux types cellulaires. On a déterminé qu’une confluence densité de 60 000 cellules/cm2 sur un insert constitué d’une membrane de polyester avec des pores de 3,0 μm, sans autre revêtement, permet d’observer un influx spécifique au sérum d’environ 6 000 cpm associés aux cellules HepG2, où 50 % des comptes radioactifs sont dans les cellules et l’autre moitié présente à la surface cellulaire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

De nouveaux modèles cellulaires in vitro par transfert de milieu et par coculture ont été mis au point afin d’évaluer la capacité des HDL à éliminer l’excès de cholestérol des tissus périphériques et de le transporter vers le foie afin d’être excrété par le foie, un processus nommé le transport inverse du cholestérol (TIC). Le système cellulaire par transfert in vitro où des macrophages J774 sont gorgés de LDL acétylées et marqués au 3H-cholestérol a été préalablement établi afin de mesurer par scintillation l’efflux de cholestérol marqué vers le milieu de culture contenant des accepteurs de cholestérol. Ce milieu conditionné est transféré sur des cellules HepG2 afin d’étudier l’influx du cholestérol marqué. Ce dernier nous permet d’observer un transport de cholestérol de 25 % hors des J774 et un transport de 39 000 cpm dans les HepG2 en utilisant un milieu contenant 2 % de sérums humains mis en commun. Une stimulation des cellules J774 par l’AMPc augmente l’efflux et l’influx d’environ 45 %. Des tests de preuve de concept ont été effectués sur le système cellulaire par co-culture qui utilise des chambres de Boyden où les J774 sont localisées au fond d’un puits et les HepG2 dans un insert, et où le milieu est partagé entre les deux types cellulaires. On a déterminé qu’une confluence densité de 60 000 cellules/cm2 sur un insert constitué d’une membrane de polyester avec des pores de 3,0 μm, sans autre revêtement, permet d’observer un influx spécifique au sérum d’environ 6 000 cpm associés aux cellules HepG2, où 50 % des comptes radioactifs sont dans les cellules et l’autre moitié présente à la surface cellulaire.