931 resultados para Blood-pressure Levels
Resumo:
Little information exists regarding the effect of several obesity markers on blood pressure (BP) levels in youth. Transverse study including 2494 boys and 2589 girls. Height, weight and waist were measured according to the international criteria and body fat (BF) by bioimpedance. BP was measured by an automated device. Hypertension was defined using sex-specific, age-specific and height-specific observation-points. Body mass index (BMI) and waist were positively related with systolic blood pressure (SBP) and diastolic blood pressure (DBP) and heart rate in both sexes, whereas the relationships with BF were less consistent. Stepwise linear regression analysis showed that BMI was positively related with SBP and DBP in both sexes, whereas BF was negatively related with SBP in both sexes and with heart rate in boys only; finally, waist was positively related with SBP in boys and heart rate in girls. Age and heart rate-adjusted values of SBP and DBP increased with BMI: for SBP, 117+/-1, 123+/-1 and 124+/-1 mmHg in normal, overweight and obese boys, respectively; corresponding values for girls were 111+/-1, 114+/-1 and 116+/-2 mmHg (mean+/-SE, P<0.001). Overweight and obese boys had an odds ratio for being hypertensive of 2.26 (95% confidence interval: 1.79-2.86) and 3.36 (2.32-4.87), respectively; corresponding values for girls were 1.58 (confidence interval 1.25-1.99) and 2.31 (1.53-3.50). BMI, not BF or waist, is consistently and independently related to BP levels in children; overweight and obesity considerably increase the risk of hypertension.
Resumo:
To study the functional role of individual alpha1-adrenergic (AR) subtypes in blood pressure (BP) regulation, we used mice lacking the alpha1B-AR and/or alpha1D-AR with the same genetic background and further studied their hemodynamic and vasoconstrictive responses. Both the alpha1D-AR knockout and alpha1B-/alpha1D-AR double knockout mice, but not the alpha1B-AR knockout mice, had significantly (p < 0.05) lower levels of basal systolic and mean arterial BP than wild-type mice in nonanesthetized condition, and they showed no significant change in heart rate or in cardiac function, as assessed by echocardiogram. All mutants showed a significantly (p < 0.05) reduced catecholamine-induced pressor and vasoconstriction responses. It is noteworthy that the infusion of norepinephrine did not elicit any pressor response at all in alpha1B-/alpha1D-AR double knockout mice. In an attempt to further examine alpha1-AR subtype, which is involved in the genesis or maintenance of hypertension, BP after salt loading was monitored by tail-cuff readings and confirmed at the endpoint by direct intra-arterial recording. After salt loading, alpha1B-AR knockout mice developed a comparable level of hypertension to wild-type mice, whereas mice lacking alpha1D-AR had significantly (p < 0.05) attenuated BP and lower levels of circulating catecholamines. Our data indicated that alpha1B- and alpha1D-AR subtypes participate cooperatively in BP regulation; however, the deletion of the functional alpha1D-AR, not alpha1B-AR, leads to an antihypertensive effect. The study shows differential contributions of alpha1B- and alpha1D-ARs in BP regulation.
Resumo:
BACKGROUND: Obesity is increasing worldwide because developing countries are adopting Western high-fat foods and sedentary lifestyles. In parallel, in many of them, hypertension is rising more rapidly, particularly with age, than in Western countries. OBJECTIVE: To assess the relationship between adiposity and blood pressure (BP) in a developing country with high average BP (The Seychelles, Indian Ocean, population mainly of African origin) in comparison to a developed country with low average BP (Switzerland, population mainly of Caucasian origin). DESIGN: Cross-sectional health examination surveys based on population random samples. SETTING: The main Seychelles island (Mahé) and two Swiss regions (Vaud-Fribourg and Ticino). SUBJECTS: Three thousand one hundred and sixteen adults (age range 35-64) untreated for hypertension. MEASUREMENTS: Body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), systolic and diastolic blood pressure (SBP and DBP, mean of two measures). METHODS: Scatterplot smoothing techniques and gender-specific linear regression models. RESULTS: On average, SBP and DBP were found to increase linearly over the whole variation range of BMI, WHR and WC. A modest, but statistically significant linear association was found between each indicator of adiposity and BP levels in separate regression models controlling for age. The regression coefficients were not significantly different between the Seychelles and the two Swiss regions, but were generally higher in women than in men. For the latter, a gain of 1.7 kg/m(2) in BMI, of 4.5 cm in WC or of 3.4% in WHR corresponded to an elevation of 1 mmHg in SBP. For women, corresponding figures were 1.25 kg/m(2), 2.5 cm and 1.8% respectively. Regression coefficients for age reflected a higher effect of this variable on both SBP and DBP in the Seychelles than in Switzerland. CONCLUSION: These findings suggest a stable linear relation of adiposity with BP, independent of age and body fat distribution, across developed and developing countries. The more rapid increase of BP with age observed in the latter countries are likely to reflect higher genetic susceptibility and/or higher cumulative exposure to another risk factor than adiposity.
Resumo:
Renin secretion is regulated by coordinated signaling between the various cells of the juxtaglomerular apparatus. The renin-secreting cells (RSC), which play a major role in the control of blood pressure, are coupled to each other and to endothelial cells by Connexin40 (Cx40)-containing channels. In this study, we show that Cx40 knockout (Cx40-/-) mice, but not their heterozygous littermates, are hypertensive due to the increase in the number of RSC, renin biosynthesis, and plasma renin. Treatment with the angiotensin II receptor AT1 antagonist candesartan or the angiotensin II-converting enzyme inhibitor ramipril reduced the blood pressure of the Cx40-/- mice to the same levels seen in wild-type (WT) mice. The elevated blood pressure of the knockout mice was not affected by clipping one renal artery (2K1C, renin-dependent model of hypertension) or after a high salt diet. Under these conditions, however, Cx40-/- mice showed an altered production and release of renin. The renin mRNA ratio between the clipped and the non-clipped kidney was lower in the knockout than in the WT 2K1C mice. This indicates that the response to a change in blood pressure was altered. The RSC of the Cx40-/- mice did not have a compensatory increase in the levels of either Cx43 or Cx37. Our data show that renin secretion is dependent on Cx40 and suggest the Cx40-/- mice may be a genetic model of renin-dependent hypertension.
Resumo:
The blood pressure (BP) lowering effect of the orally active angiotensin converting enzyme inhibitor, captopril (SQ14225), was studied in 59 hypertensive patients maintained on a constant sodium intake. Within 2 hours of the first dose of captopril BP fell from 171/107 to a maximum low of 142/92 mm Hg (p less than 0.001), and after 4 to 8 days to treatment BP averaged 145/94 mm Hg (p less than 0.001). The magnitude of BP drop induced by captopril was significantly correlated to baseline plasma renin activity (PRA) both during the acute phase (r = -0.38, p less than 0.01) and after the 4 to 8-day interval (r = -0.33, p less than 0.01). Because of considerable scatter in individual data, renin profiling was not precisely predictive of the immediate or delayed BP response of separate patients. However, the BP levels achieved following the initial dose of captopril were closely correlated to BP measured after 4 to 8 days of therapy, and appeared to have greater predictive value than control PRA of the long-term efficacy of chronic captopril therapy despite marked BP changes occurring in some patients during the intermediate period. Because of these intermediate BP changes, addition of a diuretic to enhance antihypertensive effectiveness of angiotensin blockade should be restrained for several days after initiation of captopril therapy.
Resumo:
The purpose of this study was to assess the relationship between blood pressure (BP) levels and physical activity (PA) domains accounting for overweight/obesity. Adolescents aged 10 to 17 years old were recruited (n = 1021). International Obesity Task Force (IOTF) criteria were used to define overweight and obesity. High BP was defined using the Center of Disease Control and Prevention criteria. Different domains of PA (school activities, sport out of school, and leisure time PA) were assessed using a validated questionnaire. The prevalence of overweight/obesity was 21.9% for boys and 14.8% for girls. Some 13.4% of boys and 10.2% of girls, respectively, had high blood pressure (HBP). A strong and positive association was found between overweight and HBP. After adjustment for body mass index (BMI), total PA was inversely associated with BP. When all PA domains were entered simultaneously in a regression model, and after adjustment for BMI, only sport out of school was significantly and inversely associated with systolic BP [β: -0.82 (-1.50; -0.13)]. These findings open avenue for the early prevention of HBP by the prevention of obesity and promotion of PA.
Resumo:
BACKGROUND AND OBJECTIVES: It is well established by a large number of randomized controlled trials that lowering blood pressure (BP) and low-density lipoprotein cholesterol (LDL-C) by drugs are powerful means to reduce stroke incidence, but the optimal BP and LDL-C levels to be achieved are largely uncertain. Concerning BP targets, two hypotheses are being confronted: first, the lower the BP, the better the treatment outcome, and second, the hypothesis that too low BP values are accompanied by a lower benefit and even higher risk. It is also unknown whether BP lowering and LDL-C lowering have additive beneficial effects for the primary and secondary prevention of stroke, and whether these treatments can prevent cognitive decline after stroke. RESULTS: A review of existing data from randomized controlled trials confirms that solid evidence on optimal BP and LDL-C targets is missing, possible interactions between BP and LDL-C lowering treatments have never been directly investigated, and evidence in favour of a beneficial effect of BP or LDL-C lowering on cognitive decline is, at best, very weak. CONCLUSION: A new, large randomized controlled trial is needed to determine the optimal level of BP and LDL-C for the prevention of recurrent stroke and cognitive decline.
Resumo:
OBJECTIVE: : Increases in plasma angiotensinogen (Ang-N) due to genetic polymorphisms or pharmacological stimuli like estrogen have been associated with a blood pressure (BP) rise, increased salt sensitivity and cardiovascular risk. The relationship between Ang-N, the resetting of the renin-angiotensin system, and BP still remains unclear. Angiotensin (Ang) II-induced genetic hypertension should respond to lisinopril treatment. METHODS: : A new transgenic rat line (TGR) with hepatic overexpression of native (rat) Ang-N was established to study high plasma Ang-N. The transgene contained a mutation producing Val-Ang-II, which was measured separately from nontransgenic Ile-Ang-II in plasma and renal tissue. RESULTS: : Male homozygous TGR had increased plasma Ang-N (∼20-fold), systolic BP (ΔBP + 26 mmHg), renin activity (∼2-fold), renin activity/concentration (∼5-fold), total Ang-II (∼2-fold, kidney 1.7-fold) but decreased plasma renin concentrations (-46%, kidney -85%) and Ile-Ang-I and II (-93%, -94%) vs. controls. Heterozygous TGR exhibited ∼10-fold higher plasma Ang-N and 17 mmHg ΔBP. Lisinopril decreased their SBP (-23 vs. -13 mmHg in controls), kidney Ang-II/I (∼3-fold vs. ∼2-fold) and Ile-Ang-II (-70 vs. -40%), and increased kidney renin and Ile-Ang-I (>2.5-fold vs. <2.5-fold). Kidney Ang-II remained higher and renin lower in TGR compared with controls. CONCLUSION: : High plasma Ang-N increases plasma and kidney Ang-II levels, and amplifies the plasma and renal Ang-II response to a given change in renal renin secretion. This enzyme-kinetic amplification dominates over the Ang-II mediated feedback reduction of renin secretion. High Ang-N levels thus facilitate hypertension via small increases of Ang II and may influence the effectiveness of renin-angiotensin system inhibitors.
Resumo:
We studied the effects on blood pressure and heart rate of two different phenylethanolamine N-methyltransferase (PNMT) inhibitors in normotensive, in two-kidney renal hypertensive, and in deoxycorticosterone-salt (DOC-salt) hypertensive rats. One compound (SK&F 64139) blocks the conversion of norepinephrine to epinephrine in both the central and the peripheral nervous system, whereas the other (SK&F 29661) does not cross the blood-brain barrier and therefore is active mostly in the adrenal glands. In the rats given SK&F 29661, practically no acute blood pressure changes were in the adrenal glands. In the rats given SK&F 64139 induced only a minor blood pressure and heart rate response in normotensive and two-kidney renal hypertensive rats. However, in DOC-salt hypertensive rats, it reduced arterial pressure to approximately normal levels and concomitantly slowed pulse rate. There was a close correlation between the magnitude of the blood pressure response observed in all SK&F 64139-treated animals and the control plasma norepinephrine (4 = -0.795, P less than 0.001) and epinephrine (r = -0.789, P less than 0.001) levels. These results suggest an important role for central epinephrine in regulating the peripheral sympathoadrenomedullary and the baroreceptor reflex activity, particularly when the maintenance of the high blood pressure is not renin-dependent.
Resumo:
BACKGROUND: Higher nighttime blood pressure (BP) and the loss of nocturnal dipping of BP are associated with an increased risk for cardiovascular events. However, the determinants of the loss of nocturnal BP dipping are only beginning to be understood. We investigated whether different indicators of physical activity were associated with the loss of nocturnal dipping of BP. METHODS: We conducted a cross-sectional study of 103 patients referred for 24-hour ambulatory monitoring of BP. We measured these patients' step count (SC), active energy expenditure (AEE), and total energy expenditure simultaneously, using actigraphs. RESULTS: In our study population of 103 patients, most of whom were hypertensive, SC and AEE were associated with nighttime systolic BP in univariate (SC, r = -0.28, P < 0.01; AEE, r = -0.20, P = 0.046) and multivariate linear regression analyses (SC, coefficient beta = -5.37, P < 0.001; AEE, coefficient beta = -0.24, P < 0.01). Step count was associated with both systolic (r = 0.23, P = 0.018) and diastolic (r = 0.20, P = 0.045) BP dipping. Nighttime systolic BP decreased progressively across the categories of sedentary, moderately active, and active participants (125mm Hg, 116mm Hg, 112mm Hg, respectively; P = 0.002). The degree of BP dipping of BP increased progressively across the same three categories of activity (respectively 8.9%, 14.6%, and 18.6%, P = 0.002, for systolic BP and respectively 12.8%, 18.1%, and 22.2%, P = 0.006, for diastolic BP). CONCLUSIONS: Step count is continuously associated with nighttime systolic BP and with the degree of BP dipping independently of 24-hour mean BP. The combined use of an actigraph for measuring indicators of physical activity and a device for 24-hour measurement of ambulatory BP may help identify patients at increased risk for cardiovascular events in whom increased physical activity toward higher target levels may be recommended.
Resumo:
PURPOSE OF REVIEW: Elevated blood pressure (BP) is frequent in patients with acute ischemic stroke. Pathophysiological data support its usefulness to maintain adequate perfusion of the ischemic penumba. This review article aims to summarize the available evidence from clinical studies that examined the prognostic role of BP during the acute phase of ischemic stroke and intervention studies that assessed the efficacy of active BP alteration. RECENT FINDINGS: We found 34 observational studies (33,470 patients), with results being inconsistent among the studies; most studies reported a negative association between increased levels of BP and clinical outcome, whereas a few studies showed clinical improvement with higher BP levels, clinical deterioration with decreased BP, or no association at all. Similarly, the conclusions drawn by the 18 intervention studies included in this review (1637 patients) were also heterogeneous. Very recent clinical data suggest a possible beneficial effect of early treatment with some antihypertensives on late clinical outcome. SUMMARY: Observational and interventional studies of management of acute poststroke hypertension yield conflicting results. We discuss different explanations that may account for this and discuss the current guidelines and pathophysiological considerations for the management of acute poststroke hypertension.
Resumo:
Ubiquitylation plays an important role in the control of Na⁺ homeostasis by the kidney. It is well established that the epithelial Na⁺ channel ENaC is regulated by the ubiquitin-protein ligase NEDD4-2, limiting ENaC cell surface expression and activity. Ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs). One such DUB, USP2-45, was identified previously as an aldosterone-induced protein in the kidney and is also a circadian output gene. In heterologous expression systems, USP2-45 binds to ENaC, deubiquitylates it, and enhances channel density and activity at the cell surface. Because the role of USP2-45 in renal Na⁺ transport had not been studied in vivo, we investigated here the effect of Usp2 gene inactivation in this process. We demonstrate first that USP2-45 protein has a rhythmic expression with a peak at ZT12. Usp2-KO mice did not show any differences from wild-type littermates with respect to the diurnal control of Na⁺ or K⁺ urinary excretion and plasma levels either on a standard diet or after acute and chronic changes to low- and high-Na⁺ diets, respectively. Moreover, they had similar aldosterone levels on either a low- or high-Na⁺ diet. Blood pressure measurements using telemetry did not reveal variations compared with control mice. Usp2-KO mice did not display alterations in expression of genes involved in sodium homeostasis or the ubiquitin system, as evidenced by transcriptome analysis in the kidney. Our data suggest that USP2 does not play a primary role in the control of Na⁺ balance or blood pressure.
Resumo:
Ambulatory blood pressure monitoring (ABPM) is being used increasingly in both clinical practice and hypertension research. Although there are many guidelines that emphasize the indications for ABPM, there is no comprehensive guideline dealing with all aspects of the technique. It was agreed at a consensus meeting on ABPM in Milan in 2011 that the 34 attendees should prepare a comprehensive position paper on the scientific evidence for ABPM.This position paper considers the historical background, the advantages and limitations of ABPM, the threshold levels for practice, and the cost-effectiveness of the technique. It examines the need for selecting an appropriate device, the accuracy of devices, the additional information and indices that ABPM devices may provide, and the software requirements.At a practical level, the paper details the requirements for using ABPM in clinical practice, editing considerations, the number of measurements required, and the circumstances, such as obesity and arrhythmias, when particular care needs to be taken when using ABPM.The clinical indications for ABPM, among which white-coat phenomena, masked hypertension, and nocturnal hypertension appear to be prominent, are outlined in detail along with special considerations that apply in certain clinical circumstances, such as childhood, the elderly and pregnancy, and in cardiovascular illness, examples being stroke and chronic renal disease, and the place of home measurement of blood pressure in relation to ABPM is appraised.The role of ABPM in research circumstances, such as pharmacological trials and in the prediction of outcome in epidemiological studies is examined and finally the implementation of ABPM in practice is considered in relation to the issue of reimbursement in different countries, the provision of the technique by primary care practices, hospital clinics and pharmacies, and the growing role of registries of ABPM in many countries.
Contribution of the gap junction proteins Connexin40 and Connexin43 to the control of blood pressure
Resumo:
Summary Cells in tissues and organs coordinate their activities by communicating with each other through intercellular channels named gap junctions. These channels are conduits between the cytoplasmic compartments of adjacent cells, allowing the exchange of small molecules which may be crucial for hormone secretion. Renin is normally secreted in a regulated manner by specific cells of the juxtaglomerular apparatus located within the renal cortex. Gap junctional communication may be requisite to maintain an accurate functioning in coordination of renin-producing cells, more especially as renin is of paramount importance for the control of blood pressure. Connexin43 (Cx43) and Cx40 form gap junctions that link in vivo the cells of the juxtaglomerular apparatus. Cx43 links the endothelial cells, whereas gap junctions made of Cx40 connect the endothelial cells, the renin secreting cells, as well as the endothelial cells of to the renin-secreting cells of the afferent arteriole. The observation that loss of Cx40 results in chronic hypertension associated with altered vasomotion and signal conduction along arterioles, has lead us to suggest that connexins may contribute to control blood pressure by participating to the integration of various mechanical, osmotic and electrochemical stimuli involved in the control of renin secretion and by mediating the adaptive changes of the vascular wall induced by elevated blood pressure and mechanical stress. We therefore postulated that the absence of Cx40 could have deleterious effects on the coordinated functioning of the renin-containing cells, hence accounting for hypertension. In the first part of my thesis, we reported that Cx40-deficient mice (Cx40) are hypertensive due to increased plasma renin levels and numbers of renin-producing cells. Besides, we demonstrated that prostaglandins and nitric oxide, which are possible mediators in the regulation of renin secretion by the macula densa, exert a critical role in the mechanisms controlling blood pressure ín Cx40 knockout hypertensive mice. In view of previous studies that stated avessel-specifc increase in the expression of Cx43 during renin-dependent hypertension, we hypothesized that Cx43 channels are particularly well-matched to integrate the response of cells constituting the vascular wall to hypertensive conditions. Using transgenic mice in which Cx43 was replaced by Cx32, we revealed that the replacement of Cx43 by Cx32 is associated with decreased expression and secretion of renin and prevent the renin-dependent hypertension which is normally induced in the 2K1C model. To gain insights into the regulation of connexins in two separate tissues exposed to the same fluid pressure, the second part of my thesis work was dedicated to the study of the impact of chronic hypertension and related hypertrophy on the expression of the cardiovascular connexins (Cx40, Cx37, Cx43 and Cx45) in mouse aorta and heart. Our results documented that the expression of connexins is differentially regulated in mouse aorta. according to the models of hypertension. Thus, blood pressure induces mechanical forces that differentially alter the expression of vascular connexins in order to respond to an adaptation of the aortic wall observed under pathological conditions. Altogether these data provide the first evidences that intercellular communication mediated by gap junctions is required for a proper renin secretion from the juxtaglomerular apparatus in order to control blood pressure.
Resumo:
Background: Elevated levels of g-glutamyl transferase (GGT) have been associated with subsequent risk of elevated blood pressure (BP), hypertension and diabetes. However, the causality of these relationships has not been addressed. Mendelian randomization refers to the random allocation of alleles at the time of gamete formation. Such allocation is expected to be independent of any behavioural and environmental factors (known or unknown), allowing the analysis of largely unconfounded risk associations that are not due to reverse causation. Methods: We performed a cross-sectional analysis among 4361 participants to the population based CoLaus study. Associations of sex-specific GGT quartiles with systolic BP, diastolic BP and insulin levels were assessed using multivariable linear regression analyses. The rs2017869 GGT1 variant, which explained 1.6% of the variance in GGT levels, was used as an instrument to perform a Mendelian randomization analysis. Results: Median age of the study population was 53 years. After age and sex adjustment, GGT quartiles were strongly associated with systolic and diastolic BP (all p for linear trend <0.0001). After multivariable adjustment, these relationships were significantly attenuated, but remained significant for systolic (b(95%CI)¼1.30 (0.32;2.03), p¼0.007) and diastolic BP (b (95%CI)¼0.57 (0.02;1.13), p¼0.04). Using Mendelian randomization, we observed no positive association of GGT with either systolic BP (b (95%CI)¼-5.68 (-11.51-0.16), p¼0.06) or diastolic BP (b (95%CI)¼ -2.24 (-5.98;1.49) p¼0.24). The association of GGT with insulin was also attenuated after multivariable adjustment. Nevertheless, a strong linear trend persisted in the fully adjusted model (b (95%CI)¼0.07 (0.04;0.09), p<0.0001). Using Mendelian randomization, we observed a similar positive association of GGT with insulin (b (95%CI)¼0.19 (0.01-0.37), p¼0.04). Conclusion: In this study, we found evidence for a direct causal relationship between GGT and insulin, suggesting that oxidative stress may be causally implicated in the pathogenesis of type 2 diabetes mellitus.