992 resultados para Blood Ph


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterocyclic aromatic amines (HCA) are carcinogenic mutagens formed during cooking of proteinaceous foods, particularly meat. To assist in the ongoing search for biomarkers of HCA exposure in blood, a method is described for the extraction from human plasma of the most abundant HCAs: 2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) (and its isomer 7,8-DiMeIQx), using Hollow Fibre Membrane Liquid-Phase Microextraction. This technique employs 2.5 cm lengths of porous polypropylene fibres impregnated with organic solvent to facilitate simultaneous extraction from an alkaline aqueous sample into a low volume acidic acceptor phase. This low cost protocol is extensively optimised for fibre length, extraction time, sample pH and volume. Detection is by UPLC-MS/MS using positive mode electrospray ionisation with a 3.4 min runtime, with optimum peak shape, sensitivity and baseline separation being achieved at pH 9.5. To our knowledge this is the first description of HCA chromatography under alkaline conditions. Application of fixed ion ratio tolerances for confirmation of analyte identity is discussed. Assay precision is between 4.5 and 8.8% while lower limits of detection between 2 and 5 pg/mL are below the concentrations postulated for acid-labile HCA-protein adducts in blood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monitoring of oral disease is important, not alone for oral health, but for the detection and prevention of
systemic disease. The link between oral health and systemic disease is the focus of many studies, with
indications emerging of a causal link [1]. For disease diagnostics, blood has typically been the fluid of choice
for analysis, the retrieval of which is invasive and therefore unsuitable for wearable technology. Analysis of
saliva, however, is less invasive than that of blood, requires little or no pre-treatment and is abundantly
available. A strong correlation has been found between the analytes of blood and saliva [2] with saliva
containing biomarkers for diseases such as diabetes, oral cancer and cardiovascular disease. The development of
an implantable multi-parametric wireless sensor, to monitor both salivary analytes and changes in gingival
temperature, is the aim of this research project.
The aim of our current study is to detect changes in salivary pH, using a gold electrode with a pHsensitive
iridium oxide layer, and an Ion Sensitive Field Effect Transistor probe. Characterisation studies were
carried out in artificial saliva (AS). A salivary pH of between 4.5pH-7.5pH [3], and gingival temperature
between 35°C-38°C [4], were identified as the target range of interest for the human oral environment. Sensor
measurements were recorded in solutions of varying pH and temperature. An ISFET probe was then implanted
into a prototype denture and characterised in AS. This study demonstrates the suitability of ISFET and gold
electrode pH sensors for incorporation into implantable oral sensors.
[1] G. Taylor and W. Borgnakke, “Periodontal disease: associations with diabetes, glycemic control and
complications,” Oral Dis., vol. 14, no. 3, pp. 191–203, Apr. 2008.
[2] E. Tékus, M. Kaj, E. Szabó, N. L. Szénási, I. Kerepesi, M. Figler, R. Gábriel, and M. Wilhelm,
“Comparison of blood and saliva lactate level after maximum intensity exercise,” Acta Biol. Hung., vol. 63
Suppl 1, pp. 89–98, 2012.
[3] S. Naveen, M. L. Asha, G. Shubha, A. Bajoria, and A. Jose, “Salivary Flow Rate, pH and Buffering
Capacity in Pregnant and Non Pregnant Women - A Comparative Study,” JMED Res., pp. 1–8, Feb. 2014.
[4] A. F. Holthuis and F. S. Chebib, “Observations on temperature and temperature patterns of the gingiva. I.
The effect of arch, region and health,” J. Periodontol., vol. 54, no. 10, pp. 624–628, Oct. 1983

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, there are no biomarkers which can identify patients with an increased risk of developing urothelial cancer as a result of occupational chemical exposure. The aim of this study was to evaluate the relationships between final diagnosis and 22 biomarkers measured in urine, serum and plasma collected from 156 hematuric patients. Fourteen of the 80 patients (17.5%) with urothelial cancer and 13/76 (17.1%) of the controls were deemed to have a history of chemical exposure. We applied Fisher's exact tests to explore associations between chemical exposure and final diagnosis, and tumor stage and grade, where applicable; ANOVA and t-test to compare age across patients with and without chemical exposure; and Zelen's exact test to evaluate relationships across final diagnosis, chemical exposure and smoking. Following pre-selection of biomarkers using Lasso, we identified biomarkers with differential levels across patients with and without chemical exposure using Welch's t-test. Using a one-sided t-test and considering multiple testing using FDR, we observed that TM levels in urine were significantly higher in samples from patients with a history of chemical exposure regardless of their diagnosis as control or urothelial cancer (one-sided t-test, pUC = 0.014 and pCTL = 0.043); in the presence of dipstick protein and when urinary pH levels ≤ 6 (p = 0.003), but not in the presence of dipstick blood (p = 0.115). Urothelial cancer patients with a history of chemical exposure were significantly younger (64.1 years) than those without chemical exposure (70.2 years) (one-sided t-test p-value = 0.012); and their tumors were higher grade (Fisher's exact test; p = 0.008). There was a strong association between a history of chemical exposure and smoking in urothelial cancer patients (Zelen's exact test; p = 0.025). Elevated urinary thrombomodulin levels could have the potential to identify chemical exposure in hematuric patients at high risk of developing urothelial cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La préparation de formulations à libération contrôlée est le domaine des sciences pharmaceutiques qui vise à modifier l’environnement immédiat des principes actifs pour en améliorer l’efficacité et l’innocuité. Cet objectif peut être atteint en modifiant la cinétique de circulation dans le sang ou la distribution dans l’organisme. Le but de ce projet de recherche était d’étudier le profil pharmacocinétique (PK) de différentes formulations liposomales. L’analyse PK, généralement employée pour représenter et prédire les concentrations plasmatiques des médicaments et de leurs métabolites, a été utilisée ici pour caractériser in vivo des formulations sensibles au pH servant à modifier la distribution intracellulaire de principes actifs ainsi que des liposomes destinés au traitement des intoxications médicamenteuses. Dans un premier temps, la PK d’un copolymère sensible au pH, à base de N-isopropylacrylamide (NIPAM) et d’acide méthacrylique (MAA) a été étudiée. Ce dernier, le p(NIPAM-co-MAA) est utilisé dans notre laboratoire pour la fabrication de liposomes sensibles au pH. L’étude de PK conduite sur les profils de concentrations sanguines de différents polymères a défini les caractéristiques influençant la circulation des macromolécules dans l’organisme. La taille des molécules, leur point de trouble ainsi que la présence d’un segment hydrophobe à l’extrémité des chaînes se sont avérés déterminants. Le seuil de filtration glomérulaire du polymère a été évalué à 32 000 g/mol. Finalement, l’analyse PK a permis de s’assurer que les complexes formés par la fixation du polymère à la surface des liposomes restaient stables dans le sang, après injection par voie intraveineuse. Ces données ont établi qu’il était possible de synthétiser un polymère pouvant être adéquatement éliminé par filtration rénale et que les liposomes sensibles au pH préparés avec celui-ci demeuraient intacts dans l’organisme. En second lieu, l’analyse PK a été utilisée dans le développement de liposomes possédant un gradient de pH transmembranaire pour le traitement des intoxications médicamenteuses. Une formulation a été développée et optimisée in vitro pour capturer un médicament modèle, le diltiazem (DTZ). La formulation liposomale s’est avérée 40 fois plus performante que les émulsions lipidiques utilisées en clinique. L’analyse PK des liposomes a permis de confirmer la stabilité de la formulation in vivo et d’analyser l’influence des liposomes sur la circulation plasmatique du DTZ et de son principal métabolite, le desacétyldiltiazem (DAD). Il a été démontré que les liposomes étaient capables de capturer et de séquestrer le principe actif dans la circulation sanguine lorsque celui-ci était administré, par la voie intraveineuse. L’injection des liposomes 2 minutes avant l’administration du DTZ augmentait significativement l’aire sous la courbe du DTZ et du DAD tout en diminuant leur clairance plasmatique et leur volume de distribution. L’effet de ces modifications PK sur l’activité pharmacologique du médicament a ensuite été évalué. Les liposomes ont diminué l’effet hypotenseur du principe actif administré en bolus ou en perfusion sur une période d’une heure. Au cours de ces travaux, l’analyse PK a servi à établir la preuve de concept que des liposomes possédant un gradient de pH transmembranaire pouvaient modifier la PK d’un médicament cardiovasculaire et en diminuer l’activité pharmacologique. Ces résultats serviront de base pour le développement de la formulation destinée au traitement des intoxications médicamenteuses. Ce travail souligne la pertinence d’utiliser l’analyse PK dans la mise au point de vecteurs pharmaceutiques destinés à des applications variées. À ce stade de développement, l’aspect prédictif de l’analyse n’a pas été exploité, mais le côté descriptif a permis de comparer adéquatement diverses formulations et de tirer des conclusions pertinentes quant à leur devenir dans l’organisme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper sulfate is widely used in aquaculture. Exposure to this compound can be harmful to fish, resulting in oxidative metabolism alterations and gill tissue damage. Pacu, Piaractus mesopotamicus, (wt = 43.4 +/- A 3.35 g) were distributed in experimental tanks (n = 10; 180 l) and exposed for 48 h to control (without copper addition), 0.4Cu (0.4 mg l(-1)), 0CupH (without copper addition, pH = 5.0) and 0.4CupH (0.4 mg l(-1), pH = 5.0). In liver and red muscle, the superoxide dismutase (SOD) was responsive to the increases in the aquatic copper. The plasmatic intermediary metabolites and hematological variables in the fish of group 0.4Cu were similar to those of the control group. Conversely, the exposure to 0.4CupH caused an increase in the plasmatic lactate, number of red blood cells (RBC) and hemoglobin (Hb). Plasmatic copper concentration [Cu(p)] increased in group 0.4Cu and 0.4CupH, which is higher in group 0.4CupH, suggests an effect of water pH on the absorbed copper. Exposure to 0.4Cu and 0.4CupH resulted in a reduction in the Na(+)/K(+)-ATPase activity and an increase in metallothionein (MT) in the gills. Exposure to 0CupH caused a decrease in glucose and pyruvate concentrations and an increase in RBC, Hb, and the branchial Na(+)/K(+)-ATPase activity. These responses suggest that the fish triggered mechanisms to revert the blood acidosis, save energy and increase the oxygen uptake. MT was an effective biomarker, responding to copper in different pHs and dissolved oxygen. Combined-factors caused more significant disturbance in the biomarkers than single-factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluoroacetate is a highly toxic species naturally found in plants and in commercial products (compound 1080) for population control of several undesirable animal species. However, it is non-selective and toxic to many other animals including humans, and thus its detection is very important for forensic purposes. This paper presents a sensitive and fast method for the determination of fluoroacetate in blood serum using capillary electrophoresis with capacitively coupled contactless conductivity detection. Serum blood samples were treated with ethanol to remove proteins. The samples were analyzed in BGE containing 15 mmol/L histidine and 30 mmol/L gluconic acid (pH 3.85). The calibration curve was linear up to 75 mu mol/L (R(2) = 0.9995 for N = 12). The detection limit in the blood serum was 0.15 mg/kg, which is smaller than the lethal dose for humans and other animals. Fluoride, a metabolite of the fluoroacetate defluorination, could also be detected for levels greater than 20 mu mol/L, when polybrene was used for reversion of the EOF. CTAB and didecyldimethylammonium bromide are not useful for this task because of the severe reduction of the fluoride level. However, no interference was observed for fluoroacetate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extracellular hemoglobin from Glossoscolex paulistus (HbGp) has a molecular mass of 3.6 M Da, It has a high oligomeric stability at pH 7.0 and low autoxidation rates, as compared to vertebrate hemoglobins. In this work, fluorescence and light scattering experiments were performed with the three oxidation forms of HbGp exposed to acidic pH. Our focus is on the HbGp stability at acidic pH and also on the determination of the isoelectric point (pI) of the protein. Our results show that the protein in the cyanomet form is more stable than in the other two forms, in the whole range. Our zeta-potential data are consistent with light scattering results. Average values apt obtained by different techniques were 5.6 +/- 0.5, 5.4 +/- 0.2 and 5.2 +/- 0.5 for the oxy, met, and cyanomet forms. Dynamic light scattering (DLS) experiments have shown that, at pH 6.0, the aggregation (oligomeric) state of oxy-, met- and cyanomet-HbGp remains the same as that at 7.0. The interaction between the oxy-HbGp and ionic surfactants at pH 5.0 and 6.0 was also monitored in the present study. At pH 5,0, below the protein pI, the effects of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium chloride (CTAC) are inverted when compared to pH 7.0. For CTAC, in acid pH 5.0, no precipitation is observed, while for SDS an intense light scattering appears due to a precipitation process. HbGp interacts strongly with the cationic surfactant at pH 7.0 and with the anionic one at pH 5.0. This effect is due to the predominance, in the protein surface, of residues presenting opposite charges to the surfactant headgroups. This information can be relevant for the development of extracellular hemoglobin-based artificial blood substitutes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of 2 different levels of the inspired oxygen fraction (FiO(2)) on blood gas variables was evaluated in dogs with high intracranial pressure (ICP) during propofol anesthesia (induction followed by a continuous rate infusion [CRI] of 0.6 mg/kg/min) and intermittent positive pressure ventilation (IPPV). Eight adult mongrel dogs were anesthetized on 2 occasions, 21 d apart, and received oxygen at an FiO(2) of 1.0 (G100) or 0.6 (G60) in a randomized crossover fashion. A fiberoptic catheter was implanted on the surface of the right cerebral cortex for assessment of the ICP. An increase in the ICP was induced by temporary ligation of the jugular vein 50 min after induction of anesthesia and immediately after baseline measurement of the ICP. Blood gas measurements were taken 20 min later and then at 15-min intervals for 1 h. Numerical data were submitted to Morrison's multivariate statistical methods. The ICP, the cerebral perfusion pressure and the mean arterial pressure did not differ significantly between FiO(2) levels or measurement times after jugular ligation. The only blood gas values that differed significantly (P < 0.05) were the arterial oxygen partial pressure, which was greater with G100 than with G60 throughout the procedure, and the venous haemoglobin saturation, that was greater with G100 than with G60 at M0. There were no significant differences between FiO(2) levels or measurement times in the following blood gas variables: arterial carbon dioxide partial pressure, arterial hemoglobin saturation, base deficit, bicarbonate concentration, pH, venous oxygen partial pressure, venous carbon dioxide partial pressure and the arterial-to-end-tidal carbon dioxide difference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To compare results reported for blood gas partial pressures, electrolyte concentrations, and Hct in venous blood samples collected from cattle, horses, and sheep and analyzed by use of a portable clinical analyzer (PCA) and reference analyzer (RA).Animals-Clinically normal animals (24 cattle, 22 horses, and 22 sheep).Procedures-pH; Pco(2); Po(2); total carbon dioxide concentration; oxygen saturation; base excess; concentrations of HCO(3)(-), Na(+), K(+), and ionized calcium; Hct; and hemoglobin concentration were determined with a PCA. Results were compared with those obtained for the same blood sample with an RA. Bias (mean difference) and variability (95% confidence interval) were determined for all data reported. Data were also subjected to analyses by Deming regression and Pearson correlation.Results-Analysis of Bland-Altman plots revealed good agreement between results obtained with the PCA and those obtained with the RA for pH and total carbon dioxide concentration in cattle, K(+) concentration in horses and sheep, and base excess in horses. Except for Na(+) concentration and Hct in horses and sheep, correlation was good or excellent for most variables reported.Conclusions and Clinical Relevance-Data from blood gas and electrolyte analyses obtained by use of the PCA can be used to evaluate the health status of cattle, horses, and sheep. Furthermore, the handheld PCA device may have a great advantage over the RA device as a result of the ability to analyze blood samples on farms that may be located far from urban centers. (Am J Vet Res 2010;71:515-521)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of rattlesnake (Crotalus durissus terrificus) red blood cells to volume regulate in vitro has been investigated. Blood was drawn through a catheter inserted in the dorsal aorta and equilibrated to gas mixtures of different composition. Cells shrunken osmotically by increasing the extracellular osmolarity from approximate to 291 mosm l(-1) (n = 3) to approximate to 632 mosm l(-1) (calculated) only partially regulated their volume back towards the original volume either at pH 7.51 +/- 0.05 (mean +/- S.D., n = 5) or pH 7.20 +/- 0.06 (mean +/- S.D., n = 3), There was no improvement of the regulatory volume increase at low haemoglobin oxygen saturation. The limited volume restoration was inhibited by separate additions of amiloride (10(-4) M) or DIDS (10(-4) M) suggesting involvement of the Na+/H+ and Cl-/HCO3- exchangers. Cells that were swollen osmotically by an approximate to 30% dilution of the extracellular medium also exhibited a limited ability to recover their volume. Therefore, these cells show little ability to volume regulate when exposed to in vitro conditions that shrink or swell the cell. (C) 2000 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of temperature on lung and blood gases were measured in the South American rattlesnake (Crotalus durissus terrificus). Arterial blood and lung gas samples were obtained from chronically cannulated animals at 15, 25, and 35 degrees C. As expected for reptiles, arterial pH fell with increased temperature (0.018 U degrees C-1 between 15 and 25 degrees C and 0.011 U degrees C-1 between 25 and 35 degrees C) while lung gas PCO2 rose from 5.8 mmHg at 15 degrees C to 13.2 mmHg at 35 degrees C. Concurrently, lung gas PO2 declined from 132 mmHg at 15 degrees C to 120 mmHg at 35 degrees C, and arterial PO2 increased from 33 to 76 mmHg in that temperature range. Arterial haemoglobin O-2 saturation rose from 0.53 at 15 degrees C to 0.83 at 25 degrees C but became slightly reduced (0.77) with a further elevation of temperature to 35 degrees C. Arterial haemoglobin concentration increased from 1.96 to 2.53 mM between 15 and 35 degrees C, consistent with higher demands on oxygen delivery to tissues at elevated temperatures. Moreover, the substantial increase of haemoglobin O-2 saturation between 15 and 25 degrees C conforms to the idea that reduction of the central vascular right-to-left shunt (pulmonary bypass of systemic venous return) is associated with high metabolic demands. (C) 1998 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO(3)(-)]PI) and an elevation of arterial CO(2) partial pressure (P(aCO2)) and CO(2) content in the plasma (C(PlCO2)). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O(2) partial pressure (Pa(O2)) and O(2) content (Ca(O2)) were not affected by season and tended to increase with temperature. Arterial pH (pH(a)) of dormant animals is reduced compared to active lizards at body temperatures below 15 degreesC, while no significant difference was noticed at higher temperatures. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)