941 resultados para Bivariate Hermite polynomials
Resumo:
We propose data acquisition from continuous-time signals belonging to the class of real-valued trigonometric polynomials using an event-triggered sampling paradigm. The sampling schemes proposed are: level crossing (LC), close to extrema LC, and extrema sampling. Analysis of robustness of these schemes to jitter, and bandpass additive gaussian noise is presented. In general these sampling schemes will result in non-uniformly spaced sample instants. We address the issue of signal reconstruction from the acquired data-set by imposing structure of sparsity on the signal model to circumvent the problem of gap and density constraints. The recovery performance is contrasted amongst the various schemes and with random sampling scheme. In the proposed approach, both sampling and reconstruction are non-linear operations, and in contrast to random sampling methodologies proposed in compressive sensing these techniques may be implemented in practice with low-power circuitry.
Resumo:
A 2-D Hermite-Gaussian square launch is demonstrated to show improved systems capacity over multimode fiber links. It shows a bandwidth improvement over both center and offset launches and exhibits ±5 μm misalignment tolerance. © 2011 Optical Society of America.
Resumo:
This paper presents a model designed to study vertical interactions between wheel and rail when the wheel moves over a rail welding. The model focuses on the spatial domain, and is drawn up in a simple fashion from track receptances. The paper obtains the receptances from a full track model in the frequency domain already developed by the authors, which includes deformation of the rail section and propagation of bending, elongation and torsional waves along an infinite track. Transformation between domains was secured by applying a modified rational fraction polynomials method. This obtains a track model with very few degrees of freedom, and thus with minimum time consumption for integration, with a good match to the original model over a sufficiently broad range of frequencies. Wheel-rail interaction is modelled on a non-linear Hertzian spring, and consideration is given to parametric excitation caused by the wheel moving over a sleeper, since this is a moving wheel model and not a moving irregularity model. The model is used to study the dynamic loads and displacements emerging at the wheel-rail contact passing over a welding defect at different speeds.
Resumo:
An explicit formula is obtained for the coefficients of the cyclotomic polynomial Fn(x), where n is the product of two distinct odd primes. A recursion formula and a lower bound and an improvement of Bang’s upper bound for the coefficients of Fn(x) are also obtained, where n is the product of three distinct primes. The cyclotomic coefficients are also studied when n is the product of four distinct odd primes. A recursion formula and upper bounds for its coefficients are obtained. The last chapter includes a different approach to the cyclotomic coefficients. A connection is obtained between a certain partition function and the cyclotomic coefficients when n is the product of an arbitrary number of distinct odd primes. Finally, an upper bound for the coefficients is derived when n is the product of an arbitrary number of distinct and odd primes.
Resumo:
Based on the Huygens-Fresnel diffraction integral, analytical representation of unapertured converging Hermite-cosh-Gaussian beams is derived. Focal switch of Hermite-cosh-Gaussian beams is studied detailedly with numerical calculation examples and a physical interpretation of focal switch is presented. It is found that decentered parameter is the dominant factor for the emergence of focal switch, and Fresnel number affects the amplitude of focal switch and the value of critical decentered parameter to determine emergence of focal switch. Physically, the emergence of focal switch of Hermite-cosh-Gaussian beams is resulted from competition between two major maximum intensities and switch of the absolute maximum intensity from a point to another when decentered parameter increases. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A closed-form propagation equation of Hermite-cosh-Gaussian beams passing through an unapertured thin lens is derived. Focal shifts are analyzed by means of two different methods according to the facts that the axial intensity of some focused Hermite-cosh-Gaussian beams are null and that of some others are not null but the principal maximum intensity may be located on the axis or off the axis. Optimal focusing for the beams is studied, and the condition of optimal focusing ensuring the smallest beam width is also given. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Starting from the Huygens-Fresnel diffraction integral, the field expressions of apertured polychromatic laser beams with Gaussian and Hermite-Gaussian transverse modes are derived. Influence of the bandwidth on the intensity distributions of the laser beams is analyzed. It is found that when the bandwidth increases, the amplitudes and numbers of the intensity spikes decrease and beam uniformity is improved in the near field and the width of transverse intensity distribution of the apertured beams decreases in the far field. Thus, the smoothing and narrowing effects can be achieved by increasing the bandwidth. Also, these effects are found in the laser beams with Hermite-Gaussian transverse modes as the bandwidth increases.(c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Analytical propagation expressions of ultrashort pulsed Elegant Hermite-Gaussian beams are derived and spatiotemporal properties of the pulses with different transverse modes are studied. Singularity of the complex amplitude envelope solution of the pulses obtained under slowly varying envelope approximation is analyzed in detail. The rigorous analytical solution of the pulse is deduced and no singularity emerges in the solution. The obtained results indicate that the transverse mode affects not only the spatiotemporal properties but also the singularity of the pulses. Time delay of the off-axis maximum intensity is more obvious and the singularity is located nearer to the z-axis for the pulse with higher transverse modes. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Based on the Collins integral formula, the analytic expressions of propagation of the coherent and the incoherent off-axis Hermite-cosh-Gaussian (HChG) beam combinations with rectangular symmetry passing through a paraxial first-order optical system are derived, and corresponding numerical examples are given and analysed. The resulting beam quality is discussed in terms of power in the bucket (PIB). The study suggests that the resulting beam cannot keep the initial intensity shape during the propagation and the beam quality for coherent mode is not always better than that for incoherent mode. Reviewing the numerical simulations of Gaussian, Hermite-Gaussian (HG) and cosh Gaussian (ChG) beam combinations indicates that the Hermite polynomial exerts a chief influence on the irradiance profile of composite beam and far field power concentration.
Resumo:
A 2-D Hermite-Gaussian square launch is demonstrated to show improved systems capacity over multimode fiber links. It shows a bandwidth improvement over both center and offset launches and exhibits ±5 ìm misalignment tolerance. © OSA/OFC/NFOEC 2011.
Resumo:
For the first time, mode group division multiplexing is achieved in a multimode fiber link using a 2-D Hermite-Gaussian mode launch. 20 Gb/s error-free transmission is achieved over a 250 m worst-case OM1 multimode fiber link. © OSA 2014.