853 resultados para Biometrias multimodais. Comitês de classificadores. Biometrias revog áveis. Algoritmos genéticos
Resumo:
The present research aimed at verifying the performance, as instruments of democratic inclusion, of the managing committees (¿Comitês Gestores de Bairro¿), created by the Government of Rio de Janeiro in the scope of the Nova Baixada Program. Thus, at first, it was presented the concept of democracy, its presuppositions and fragilities, as well as some mechanisms introduced with the objective to extend the effectiveness of this regimen, like the channels of popular participation. It was also demonstrated the importance of the diffusion of civic values for the consolidation of the democracy, mainly in countries like Brazil, where determined cultural characteristics of the society use to act in a negative way in the democratization process. With this propose, some democratic theories, which value aspects as civism and social capital, had been presented and it was also analyzed the cultural elements of the Brazilian society that had negative implications in the performance of the channels of participation introduced in the country. Finally, it was examined the performance of the Comitês Gestores de Bairro (managing committees) of the Nova Baixada Program, trying to establish a relation between the structure of them and the cultural characteristics of our society.
Resumo:
A presente dissertação apresenta a análise dos classificadores nominais específicos chineses, embasada na Lingüística Cognitiva, tendo como arcabouço teórico a Semântica Cognitiva Experiencialista e a Teoria Prototípica, visando a revelar as motivações semânticas subjacentes e as propriedades de categorização dos classificadores nominais chineses, quando colocados junto a substantivos. Foram analisados todos os classificadores nominais, a partir dos modelos da Semântica Cognitiva Experiencialista, baseados em Lakoff (1987). A amostragem envolveu dados retirados de livros, revistas e internet e da própria experiência vivencial de pesquisadora. Estão descritas as análises de dez classificadores, selecionados pela relevância cultural e potencial de explicitação dos aspectos discutidos. O estudo revela que a combinação de classificadores com substantivos não é arbitrária, como alguns lingüistas chineses acreditam, mas, sim, um reflexo da interação humana com o mundo objetivo, baseada na cognição.
Resumo:
O escopo teórico de Gestão Internacional atualmente atinge tantos locais quanto pessoas ao redor do planeta e pode se expandir para atender também a um conjunto mais amplo de empresas que somente as multinacionais. Com o objetivo de analisar os desafios cross-culturais e os conflitos que permearam o Comitê Organizador dos XV Jogos Pan-americanos Rio 2007, este estudo equipara Comitês Organizadores de Jogos a subsidiárias com mandato global. A partir de uma metodologia de inspiração interpretativista cultural defendendo o papel do contexto local por uma abordagem crítica, analisa o sistema de ação cultural brasileiro e contrapõe teorias clássicas da abordagem cross-cultural com uma visão qualitativa de base sócio-antropológica. Foram realizadas entrevistas semiestruturadas com ex-funcionários do Comitê Rio 2007 tanto brasileiros quanto estrangeiros e consultores que apoiaram a realização dos Jogos. Várias questões foram levantadas que apóiam a influência de características comportamentais culturais brasileiras como o paternalismo, a lealdade às pessoas, a flexibilidade, e evitar conflitos nas relações pessoais e organizacionais. Ao mesmo tempo, foi possível identificar três possíveis causas de conflitos entre os atores principais das narrativas (os consultores, o Comitê Organizador Rio2007 e o governo): (1) a diferença no nível de experiência /conhecimento explícito e tácito, (2) a desconfiança, e (3) o orgulho; e o esforço de comunicação foi identificado como possível solução. Por fim, foi possível visualizar traços das teorias clássicas cross-culturais dentro do estudo, mas foi reforçada a crítica de que é impossível isolar a cultura e o contexto local como variáveis contingenciais, muito menos ignorá-los.
Resumo:
A análise sobre se a existência de comitês de investimentos que concedam poderes de ingerência aos cotistas é uma variável levada em consideração pelos potenciais investidores de fundos de investimento em participação (“FIPs”) utilizados como veículos de investimento em Private Equity (“FIPs PE”) no mercado brasileiro é o objeto do presente trabalho, cujo objetivo é verificar se há competição entre gestores de FIPs PE pela inclusão de tais comitês em seus regulamentos, com vistas a prospectar um maior número de cotistas. Por meio da realização de pesquisa empírica, na qual serão analisados os regulamentos de FIPs PE que foram registrados desde o ano de 2006 até o ano de 2011 perante a Comissão de Valores Mobiliários (“CVM”), com vistas a examinar se houve aumento no número de regulamentos que previssem comitês de investimento e no número de gestores que adotam comitês de investimento usualmente nos fundos que gerem, se pretende comprovar a hipótese de que os comitês de investimento são uma variável que interfere na decisão dos investidores sobre em qual FIP PE investirão seus recursos e, portanto, que os gestores de FIPs PE tendem a estabelecer este mecanismo nos regulamentos dos fundos que gerem. Os pressupostos teóricos que justificam a adoção de mecanismos de governança pelos FIPs PE, com base na literatura sobre a teoria da agência – enfatizando-se os temas da assimetria de informação, risco moral, seleção adversa e custos de agência - e, ainda, os mecanismos de governança mais usuais na indústria de FIPs PE são apresentados de forma a conferir ao tema o devido embasamento teórico. A relevância deste trabalho decorre da importância que a indústria de Private Equity possui na economia, por atuar em determinado estágio de um empreendimento onde o acesso ao financiamento é via de regra escasso. Além disso, o tema se revela atual, já que houve, apenas no ano de 2011, captações recordes de fundos de Private Equity no Brasil, que somaram um montante de US$ 8,1 bilhões.
Resumo:
Este trabalho minera as informações coletadas no processo de vestibular entre 2009 e 2012 para o curso de graduação de administração de empresas da FGV-EAESP, para estimar classificadores capazes de calcular a probabilidade de um novo aluno ter bom desempenho. O processo de KDD (Knowledge Discovery in Database) desenvolvido por Fayyad et al. (1996a) é a base da metodologia adotada e os classificadores serão estimados utilizando duas ferramentas matemáticas. A primeira é a regressão logística, muito usada por instituições financeiras para avaliar se um cliente será capaz de honrar com seus pagamentos e a segunda é a rede Bayesiana, proveniente do campo de inteligência artificial. Este estudo mostre que os dois modelos possuem o mesmo poder discriminatório, gerando resultados semelhantes. Além disso, as informações que influenciam a probabilidade de o aluno ter bom desempenho são a sua idade no ano de ingresso, a quantidade de vezes que ele prestou vestibular da FGV/EAESP antes de ser aprovado, a região do Brasil de onde é proveniente e as notas das provas de matemática fase 01 e fase 02, inglês, ciências humanas e redação. Aparentemente o grau de formação dos pais e o grau de decisão do aluno em estudar na FGV/EAESP não influenciam nessa probabilidade.
Resumo:
Sea urchins are benthic macroinvertebrates that inhabit shallow coastal waters in tropical and temperate zones. Urchins are usually classified as generalists or omnivores as they can adjust their diet according to the food resources available in the environment. Due to the strong grazing pressure they may exert, urchins have an important role in marine ecosystems, occupying different trophic levels and stimulating the intensification of the dynamics of communities where they occur. In 2004, a monitoring program focused on the population dynamics of the white sea urchin, Tripneustes ventricosus, has been initiated in the Fernando de Noronha Archipelago. At the same time, a surprisingly lack of information on the species biology has been noted, despite their wide geographical distribution and economic importance in many parts of its range. Hence, this work was developed to provide information on the feeding habits of T. ventricosus in the archipelago. Ten specimens were collected between December 2006 and July 2007 at two sites of the archipelago, Air France and Sueste Bay for biometrics and analysis of gut contents. Test diameters ranged from 9.19 cm (± 1.1) to 10.08 cm (± 0.58). Calculated stomach repletion index (IRE) was higher (p <0.05) in the Air France site and also during January and July. The IRE was not correlated to the gonad index. Fifteen different species of algae were detected in a total of 120 stomachs examined: 4 Chlorophytas, 4 Phaeophytas and 6 Rhodophytas. Food diversity (p <0.05) was higher in December 2006 and January 2007. Although several items had a high frequency of occurrence, they were low represented in terms of weight, and consequently, had a low level of relative importance. The brown algae Dictyopteris spp and Dictyota spp, followed by the green algae Caulerpa verticillata accounted for the greatest importance in T. ventricosus diet, comprising about 90% of the consumed items
Resumo:
The composition of ichthyofauna discarded by trawling shrimping, their reproductive status and feeding ecology were studied on the beaches of Basin Rio Grande do Norte, Brazil. Fish were collected monthly in the year of 2012. During biometrics, portions of the digestive tract and of gonads were removed, fixed in formalin 10% and Bouin, respectively, for be submitted to histological processing by the techniques of hematoxylin-eosin. Stomach content analyzes were performed using the methods of Frequency of Occurrence and Volumetric and was calculated the repletion index. Throughout the study period were recorded a total of 49 species. The fish assemblages differed between sections monitoring, with the highest abundance, biomass and indices of richness and diversity in sections B, D and C. Already the excerpt A, showed higher values for dominance and equitability. In the cluster analysis according to the faunal similarity was observed the formation of three groups: group I formed by excerpts B and D, group II by excerpt C and group III formed by excerpt A. The assessment of reproductive stage revealed that the fish assemblages discarded by trawling are composed mainly of juveniles. Regarding the feeding ecology, the species Larimus breviceps, Menticirrhus littoralis and Pomadasys corvinaeformis characterized as carnivorous with tendency to carcinofagia. Already Conodon nobilis characterized as carnivorous with tendency to piscivory, but all proved generalist-opportunistic with increase of feeding activity during drought. The dendrogram of grouping of the species developed based on the food items used shows the formation of four groups: Group I consists of species that feed mainly of "gastropod" and "sediment"; group II of "teleost fish"; the group III of "crustacea" and group IV of "echinodermata" and "bivalve". The anatomical and histological characteristics of the digestive tract were consistent with the dietary habits of the analyzed species. In this context, the Costa Branca of Rio Grande do Norte can be considered a feeding site and recruitment for juveniles, which, opportunistically, utilize resources associated with the background
Resumo:
The use of the maps obtained from remote sensing orbital images submitted to digital processing became fundamental to optimize conservation and monitoring actions of the coral reefs. However, the accuracy reached in the mapping of submerged areas is limited by variation of the water column that degrades the signal received by the orbital sensor and introduces errors in the final result of the classification. The limited capacity of the traditional methods based on conventional statistical techniques to solve the problems related to the inter-classes took the search of alternative strategies in the area of the Computational Intelligence. In this work an ensemble classifiers was built based on the combination of Support Vector Machines and Minimum Distance Classifier with the objective of classifying remotely sensed images of coral reefs ecosystem. The system is composed by three stages, through which the progressive refinement of the classification process happens. The patterns that received an ambiguous classification in a certain stage of the process were revalued in the subsequent stage. The prediction non ambiguous for all the data happened through the reduction or elimination of the false positive. The images were classified into five bottom-types: deep water; under-water corals; inter-tidal corals; algal and sandy bottom. The highest overall accuracy (89%) was obtained from SVM with polynomial kernel. The accuracy of the classified image was compared through the use of error matrix to the results obtained by the application of other classification methods based on a single classifier (neural network and the k-means algorithm). In the final, the comparison of results achieved demonstrated the potential of the ensemble classifiers as a tool of classification of images from submerged areas subject to the noise caused by atmospheric effects and the water column
Resumo:
Equipment maintenance is the major cost factor in industrial plants, it is very important the development of fault predict techniques. Three-phase induction motors are key electrical equipments used in industrial applications mainly because presents low cost and large robustness, however, it isn t protected from other fault types such as shorted winding and broken bars. Several acquisition ways, processing and signal analysis are applied to improve its diagnosis. More efficient techniques use current sensors and its signature analysis. In this dissertation, starting of these sensors, it is to make signal analysis through Park s vector that provides a good visualization capability. Faults data acquisition is an arduous task; in this way, it is developed a methodology for data base construction. Park s transformer is applied into stationary reference for machine modeling of the machine s differential equations solution. Faults detection needs a detailed analysis of variables and its influences that becomes the diagnosis more complex. The tasks of pattern recognition allow that systems are automatically generated, based in patterns and data concepts, in the majority cases undetectable for specialists, helping decision tasks. Classifiers algorithms with diverse learning paradigms: k-Neighborhood, Neural Networks, Decision Trees and Naïves Bayes are used to patterns recognition of machines faults. Multi-classifier systems are used to improve classification errors. It inspected the algorithms homogeneous: Bagging and Boosting and heterogeneous: Vote, Stacking and Stacking C. Results present the effectiveness of constructed model to faults modeling, such as the possibility of using multi-classifiers algorithm on faults classification
Resumo:
Reinforcement learning is a machine learning technique that, although finding a large number of applications, maybe is yet to reach its full potential. One of the inadequately tested possibilities is the use of reinforcement learning in combination with other methods for the solution of pattern classification problems. It is well documented in the literature the problems that support vector machine ensembles face in terms of generalization capacity. Algorithms such as Adaboost do not deal appropriately with the imbalances that arise in those situations. Several alternatives have been proposed, with varying degrees of success. This dissertation presents a new approach to building committees of support vector machines. The presented algorithm combines Adaboost algorithm with a layer of reinforcement learning to adjust committee parameters in order to avoid that imbalances on the committee components affect the generalization performance of the final hypothesis. Comparisons were made with ensembles using and not using the reinforcement learning layer, testing benchmark data sets widely known in area of pattern classification
Resumo:
Although some individual techniques of supervised Machine Learning (ML), also known as classifiers, or algorithms of classification, to supply solutions that, most of the time, are considered efficient, have experimental results gotten with the use of large sets of pattern and/or that they have a expressive amount of irrelevant data or incomplete characteristic, that show a decrease in the efficiency of the precision of these techniques. In other words, such techniques can t do an recognition of patterns of an efficient form in complex problems. With the intention to get better performance and efficiency of these ML techniques, were thought about the idea to using some types of LM algorithms work jointly, thus origin to the term Multi-Classifier System (MCS). The MCS s presents, as component, different of LM algorithms, called of base classifiers, and realized a combination of results gotten for these algorithms to reach the final result. So that the MCS has a better performance that the base classifiers, the results gotten for each base classifier must present an certain diversity, in other words, a difference between the results gotten for each classifier that compose the system. It can be said that it does not make signification to have MCS s whose base classifiers have identical answers to the sames patterns. Although the MCS s present better results that the individually systems, has always the search to improve the results gotten for this type of system. Aim at this improvement and a better consistency in the results, as well as a larger diversity of the classifiers of a MCS, comes being recently searched methodologies that present as characteristic the use of weights, or confidence values. These weights can describe the importance that certain classifier supplied when associating with each pattern to a determined class. These weights still are used, in associate with the exits of the classifiers, during the process of recognition (use) of the MCS s. Exist different ways of calculating these weights and can be divided in two categories: the static weights and the dynamic weights. The first category of weights is characterizes for not having the modification of its values during the classification process, different it occurs with the second category, where the values suffers modifications during the classification process. In this work an analysis will be made to verify if the use of the weights, statics as much as dynamics, they can increase the perfomance of the MCS s in comparison with the individually systems. Moreover, will be made an analysis in the diversity gotten for the MCS s, for this mode verify if it has some relation between the use of the weights in the MCS s with different levels of diversity
Resumo:
The main goal of this work is to investigate the suitability of applying cluster ensemble techniques (ensembles or committees) to gene expression data. More specifically, we will develop experiments with three diferent cluster ensembles methods, which have been used in many works in literature: coassociation matrix, relabeling and voting, and ensembles based on graph partitioning. The inputs for these methods will be the partitions generated by three clustering algorithms, representing diferent paradigms: kmeans, ExpectationMaximization (EM), and hierarchical method with average linkage. These algorithms have been widely applied to gene expression data. In general, the results obtained with our experiments indicate that the cluster ensemble methods present a better performance when compared to the individual techniques. This happens mainly for the heterogeneous ensembles, that is, ensembles built with base partitions generated with diferent clustering algorithms
Resumo:
Avaliou-se o desempenho de tilápias-do-nilo (Oreochromis niloticus) produzidas em tanque-rede, providas de dispensadores automáticos de ração, alimentadas em diferentes frequências - uma vez por hora e a cada duas horas - e períodos - durante o dia, à noite ou ambos. Dezoito tanques-rede de 1.0m³ foram colocados em um tanque de 2000m² com dois metros de profundidade e renovação de água de 5%. Cento e setenta tilápias, com peso inicial de 16.0±4.9g foram distribuídas em cada tanque-rede de 1m³ e a taxa alimentar foi ajustada a cada 21 dias junto com as biometrias. As medidas foram coletadas de março a julho (outono e inverno). Observou-se diferença significativa para peso final (P<0.05) entre os tratamentos. O aumento da frequência alimentar melhorou o desempenho produtivo de tilápias-do-nilo produzidas em tanque-rede e permitiu melhor manejo alimentar. A melhor conversão alimentar para alta frequência, 24 vezes dia-1, pode resultar em uma economia de até 360kg de ração por tonelada de peixe produzido, melhorando a sustentabilidade econômica para produção de tilápia e sugerindo menor poluição ambiental.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Incluye Bibliografía