930 resultados para Biomedical technicians
Resumo:
BACKGROUND: A possible strategy for increasing smoking cessation rates could be to provide smokers who have contact with healthcare systems with feedback on the biomedical or potential future effects of smoking, e.g. measurement of exhaled carbon monoxide (CO), lung function, or genetic susceptibility to lung cancer. OBJECTIVES: To determine the efficacy of biomedical risk assessment provided in addition to various levels of counselling, as a contributing aid to smoking cessation. SEARCH METHODS: For the most recent update, we searched the Cochrane Collaboration Tobacco Addiction Group Specialized Register in July 2012 for studies added since the last update in 2009. SELECTION CRITERIA: Inclusion criteria were: a randomized controlled trial design; subjects participating in smoking cessation interventions; interventions based on a biomedical test to increase motivation to quit; control groups receiving all other components of intervention; an outcome of smoking cessation rate at least six months after the start of the intervention. DATA COLLECTION AND ANALYSIS: Two assessors independently conducted data extraction on each paper, with disagreements resolved by consensus. Results were expressed as a relative risk (RR) for smoking cessation with 95% confidence intervals (CI). Where appropriate, a pooled effect was estimated using a Mantel-Haenszel fixed-effect method. MAIN RESULTS: We included 15 trials using a variety of biomedical tests. Two pairs of trials had sufficiently similar recruitment, setting and interventions to calculate a pooled effect; there was no evidence that carbon monoxide (CO) measurement in primary care (RR 1.06, 95% CI 0.85 to 1.32) or spirometry in primary care (RR 1.18, 95% CI 0.77 to 1.81) increased cessation rates. We did not pool the other 11 trials due to the presence of substantial clinical heterogeneity. Of the remaining 11 trials, two trials detected statistically significant benefits: one trial in primary care detected a significant benefit of lung age feedback after spirometry (RR 2.12, 95% CI 1.24 to 3.62) and one trial that used ultrasonography of carotid and femoral arteries and photographs of plaques detected a benefit (RR 2.77, 95% CI 1.04 to 7.41) but enrolled a population of light smokers and was judged to be at unclear risk of bias in two domains. Nine further trials did not detect significant effects. One of these tested CO feedback alone and CO combined with genetic susceptibility as two different interventions; none of the three possible comparisons detected significant effects. One trial used CO measurement, one used ultrasonography of carotid arteries and two tested for genetic markers. The four remaining trials used a combination of CO and spirometry feedback in different settings. AUTHORS' CONCLUSIONS: There is little evidence about the effects of most types of biomedical tests for risk assessment on smoking cessation. Of the fifteen included studies, only two detected a significant effect of the intervention. Spirometry combined with an interpretation of the results in terms of 'lung age' had a significant effect in a single good quality trial but the evidence is not optimal. A trial of carotid plaque screening using ultrasound also detected a significant effect, but a second larger study of a similar feedback mechanism did not detect evidence of an effect. Only two pairs of studies were similar enough in terms of recruitment, setting, and intervention to allow meta-analyses; neither of these found evidence of an effect. Mixed quality evidence does not support the hypothesis that other types of biomedical risk assessment increase smoking cessation in comparison to standard treatment. There is insufficient evidence with which to evaluate the hypothesis that multiple types of assessment are more effective than single forms of assessment.
Resumo:
This article summarizes the basic principles of scanning electron microscopy and the capabilities of the technique with different examples ofapplications in biomedical and biological research.
Resumo:
BACKGROUND: A possible strategy for increasing smoking cessation rates could be to provide smokers who have contact with healthcare systems with feedback on the biomedical or potential future effects of smoking, e.g. measurement of exhaled carbon monoxide (CO), lung function, or genetic susceptibility to lung cancer. We reviewed systematically data on smoking cessation rates from controlled trials that used biomedical risk assessment and feedback. OBJECTIVES: To determine the efficacy of biomedical risk assessment provided in addition to various levels of counselling, as a contributing aid to smoking cessation. SEARCH STRATEGY: We systematically searched he Cochrane Collaboration Tobacco Addiction Group Specialized Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (1966 to 2004), and EMBASE (1980 to 2004). We combined methodological terms with terms related to smoking cessation counselling and biomedical measurements. SELECTION CRITERIA: Inclusion criteria were: a randomized controlled trial design; subjects participating in smoking cessation interventions; interventions based on a biomedical test to increase motivation to quit; control groups receiving all other components of intervention; an outcome of smoking cessation rate at least six months after the start of the intervention. DATA COLLECTION AND ANALYSIS: Two assessors independently conducted data extraction on each paper, with disagreements resolved by consensus. MAIN RESULTS: From 4049 retrieved references, we selected 170 for full text assessment. We retained eight trials for data extraction and analysis. One of the eight used CO alone and CO + Genetic Susceptibility as two different intervention groups, giving rise to three possible comparisons. Three of the trials isolated the effect of exhaled CO on smoking cessation rates resulting in the following odds ratios (ORs) and 95% confidence intervals (95% CI): 0.73 (0.38 to 1.39), 0.93 (0.62 to 1.41), and 1.18 (0.84 to 1.64). Combining CO measurement with genetic susceptibility gave an OR of 0.58 (0.29 to 1.19). Exhaled CO measurement and spirometry were used together in three trials, resulting in the following ORs (95% CI): 0.6 (0.25 to 1.46), 2.45 (0.73 to 8.25), and 3.50 (0.88 to 13.92). Spirometry results alone were used in one other trial with an OR of 1.21 (0.60 to 2.42).Two trials used other motivational feedback measures, with an OR of 0.80 (0.39 to 1.65) for genetic susceptibility to lung cancer alone, and 3.15 (1.06 to 9.31) for ultrasonography of carotid and femoral arteries performed in light smokers (average 10 to 12 cigarettes a day). AUTHORS' CONCLUSIONS: Due to the scarcity of evidence of sufficient quality, we can make no definitive statements about the effectiveness of biomedical risk assessment as an aid for smoking cessation. Current evidence of lower quality does not however support the hypothesis that biomedical risk assessment increases smoking cessation in comparison with standard treatment. Only two studies were similar enough in term of recruitment, setting, and intervention to allow pooling of data and meta-analysis.
Resumo:
Improvement of mathematical education and motivation of students in the mathematics" area is needed. What can be done? We introduce some ideas to generate the student"s interest for mathematics, because they often present difficulties in appreciating the relevance of mathematics and its role in the health sciences. We consider that a cornerstone in the strategy to attract the students" interest is linking the mathematics with real biomedical situations. We proceed in the following manner: We first present a real biomedical situation to produce interest and to generate curiosity. Second, we ask thought-provoking questions to students as: Which is the biomedical problem presented? Which is my knowledge on this situation? What could I do to solve this biomedical situation? Do I need some new mathematical concepts and procedures? Thereupon, the teacher explains the mathematical concepts necessary to solve the case presented, providing definitions, properties and tools for graphical display and/or mathematical calculations. In this learning methodology, ICTs were cornerstones for reaching the proposed competences. Furthermore, ICTs can also be used in the evaluative task in its two possible aspects: formative and for obtaining a qualification. Comments from students about this new mathematics teaching method indicate that the use of real biomedical case studies kept the lessons in mathematics interesting.
Resumo:
Background. Although peer review is widely considered to be the most credible way of selecting manuscripts and improving the quality of accepted papers in scientific journals, there is little evidence to support its use. Our aim was to estimate the effects on manuscript quality of either adding a statistical peer reviewer or suggesting the use of checklists such as CONSORT or STARD to clinical reviewers or both. Methodology and Principal Findings. Interventions were defined as 1) the addition of a statistical reviewer to the clinical peer review process, and 2) suggesting reporting guidelines to reviewers; with"no statistical expert" and"no checklist" as controls. The two interventions were crossed in a 262 balanced factorial design including original research articles consecutively selected, between May 2004 and March 2005, by the Medicina Clinica (Barc) editorial committee. We randomized manuscripts to minimize differences in terms of baseline quality and type of study (intervention, longitudinal, cross-sectional, others). Sample-size calculations indicated that 100 papers provide an 80% power to test a 55% standardized difference. We specified the main outcome as the increment in quality of papers as measured on the Goodman Scale. Two blinded evaluators rated the quality of manuscripts at initial submission and final post peer review version. Of the 327 manuscripts submitted to the journal, 131 were accepted for further review, and 129 were randomized. Of those, 14 that were lost to follow-up showed no differences in initial quality to the followed-up papers. Hence, 115 were included in the main analysis, with 16 rejected for publication after peer review. 21 (18.3%) of the 115 included papers were interventions, 46 (40.0%) were longitudinal designs, 28 (24.3%) cross-sectional and 20 (17.4%) others. The 16 (13.9%) rejected papers had a significantly lower initial score on the overall Goodman scale than accepted papers (difference 15.0, 95% CI: 4.6- 24.4). The effect of suggesting a guideline to the reviewers had no effect on change in overall quality as measured by the Goodman scale (0.9, 95% CI: 20.3+2.1). The estimated effect of adding a statistical reviewer was 5.5 (95% CI: 4.3-6.7), showing a significant improvement in quality. Conclusions and Significance. This prospective randomized study shows the positive effect of adding a statistical reviewer to the field-expert peers in improving manuscript quality. We did not find a statistically significant positive effect by suggesting reviewers use reporting guidelines.
Resumo:
The present study was initiated with the aim to assess the in vivo electrochemical corrosion behaviour of CoCrMo biomedical alloys in human synovial fluids in an attempt to identify possible patient or pathology specific effects. For this, electrochemical measurements (open circuit potential OCP, polarization resistance Rp, potentiodynamic polarization curves, electrochemical impedance spectroscopy EIS) were carried out on fluids extracted from patients with different articular pathologies and prosthesis revisions. Those electrochemical measurements could be carried out with outstanding precision and signal stability. The results show that the corrosion behaviour of CoCrMo alloy in synovial fluids not only depends on material reactivity but also on the specific reactions of synovial fluid components, most likely involving reactive oxygen species. In some patients the latter were found to determine the whole cathodic and anodic electrochemical response. Depending on patients, corrosion rates varied significantly between 50 and 750mgdm(-2)year(-1).
Resumo:
Biomedical research is currently facing a new type of challenge: an excess of information, both in terms of raw data from experiments and in the number of scientific publications describing their results. Mirroring the focus on data mining techniques to address the issues of structured data, there has recently been great interest in the development and application of text mining techniques to make more effective use of the knowledge contained in biomedical scientific publications, accessible only in the form of natural human language. This thesis describes research done in the broader scope of projects aiming to develop methods, tools and techniques for text mining tasks in general and for the biomedical domain in particular. The work described here involves more specifically the goal of extracting information from statements concerning relations of biomedical entities, such as protein-protein interactions. The approach taken is one using full parsing—syntactic analysis of the entire structure of sentences—and machine learning, aiming to develop reliable methods that can further be generalized to apply also to other domains. The five papers at the core of this thesis describe research on a number of distinct but related topics in text mining. In the first of these studies, we assessed the applicability of two popular general English parsers to biomedical text mining and, finding their performance limited, identified several specific challenges to accurate parsing of domain text. In a follow-up study focusing on parsing issues related to specialized domain terminology, we evaluated three lexical adaptation methods. We found that the accurate resolution of unknown words can considerably improve parsing performance and introduced a domain-adapted parser that reduced the error rate of theoriginal by 10% while also roughly halving parsing time. To establish the relative merits of parsers that differ in the applied formalisms and the representation given to their syntactic analyses, we have also developed evaluation methodology, considering different approaches to establishing comparable dependency-based evaluation results. We introduced a methodology for creating highly accurate conversions between different parse representations, demonstrating the feasibility of unification of idiverse syntactic schemes under a shared, application-oriented representation. In addition to allowing formalism-neutral evaluation, we argue that such unification can also increase the value of parsers for domain text mining. As a further step in this direction, we analysed the characteristics of publicly available biomedical corpora annotated for protein-protein interactions and created tools for converting them into a shared form, thus contributing also to the unification of text mining resources. The introduced unified corpora allowed us to perform a task-oriented comparative evaluation of biomedical text mining corpora. This evaluation established clear limits on the comparability of results for text mining methods evaluated on different resources, prompting further efforts toward standardization. To support this and other research, we have also designed and annotated BioInfer, the first domain corpus of its size combining annotation of syntax and biomedical entities with a detailed annotation of their relationships. The corpus represents a major design and development effort of the research group, with manual annotation that identifies over 6000 entities, 2500 relationships and 28,000 syntactic dependencies in 1100 sentences. In addition to combining these key annotations for a single set of sentences, BioInfer was also the first domain resource to introduce a representation of entity relations that is supported by ontologies and able to capture complex, structured relationships. Part I of this thesis presents a summary of this research in the broader context of a text mining system, and Part II contains reprints of the five included publications.
Resumo:
Here we investigate the formation of superficial micro- and nanostructures in poly(ethylene-2,6-naphthalate) (PEN), with a view to their use in biomedical device applications, and compare its performance with a polymer commonly used for the fabrication of these devices, poly(methyl methacrylate) (PMMA). The PEN is found to replicate both micro- and nanostructures in its surface, albeit requiring more forceful replication conditions than PMMA, producing a slight increase in surface hydrophilicity. This ability to form micro/nanostructures, allied to biocompatibility and good optical transparency, suggests that PEN could be a useful material for production of, or for incorporation into, transparent devices for biomedical applications. Such devices will be able to be autoclaved, due to the polymer's high temperature stability, and will be useful for applications where forceful experimental conditions are required, due to a superior chemical resistance over PMMA.
Resumo:
Structural studies of proteins aim at elucidating the atomic details of molecular interactions in biological processes of living organisms. These studies are particularly important in understanding structure, function and evolution of proteins and in defining their roles in complex biological settings. Furthermore, structural studies can be used for the development of novel properties in biomolecules of environmental, industrial and medical importance. X-ray crystallography is an invaluable tool to obtain accurate and precise information about the structure of proteins at the atomic level. Glutathione transferases (GSTs) are amongst the most versatile enzymes in nature. They are able to catalyze a wide variety of conjugation reactions between glutathione (GSH) and non-polar components containing an electrophilic carbon, nitrogen or sulphur atom. Plant GSTs from the Tau class (a poorly characterized class) play an important role in the detoxification of xenobiotics and stress tolerance. Structural studies were performed on a Tau class fluorodifen-inducible glutathione transferase from Glycine max (GmGSTU4-4) complexed with GSH (2.7 Å) and a product analogue Nb-GSH (1.7 Å). The three-dimensional structure of the GmGSTU4-4-GSH complex revealed that GSH binds in different conformations in the two subunits of the dimer: in an ionized form in one subunit and a non-ionized form in the second subunit. Only the ionized form of the substrate may lead to the formation of a catalytically competent complex. Structural comparison between the GSH and Nb-GSH bound complexes revealed significant differences with respect to the hydrogen-bonding, electrostatic interaction pattern, the upper part of -helix H4 and the C-terminus of the enzyme. These differences indicate an intrasubunit modulation between the G-and Hsites suggesting an induced-fit mechanism of xenobiotic substrate binding. A novel binding site on the surface of the enzyme was also revealed. Bacterial type-II L-asparaginases are used in the treatment of haematopoietic diseases such as acute lymphoblastic leukaemia (ALL) and lymphomas due to their ability to catalyze the conversion of L-asparagine to L-aspartate and ammonia. Escherichia coli and Erwinia chrysanthemi asparaginases are employed for the treatment of ALL for over 30 years. However, serious side-effects affecting the liver and pancreas have been observed due to the intrinsic glutaminase activity of the administered enzymes. Structural studies on Helicobacter pylori L-asparaginase (HpA) were carried out in an effort to discover novel L-asparaginases with potential chemotherapeutic utility in ALL treatment. Detailed analysis of the active site geometry revealed structurally significant differences between HpA and other Lasparaginases that may be important for the biological activities of the enzyme and could be further exploited in protein engineering efforts.
Resumo:
Biomedical natural language processing (BioNLP) is a subfield of natural language processing, an area of computational linguistics concerned with developing programs that work with natural language: written texts and speech. Biomedical relation extraction concerns the detection of semantic relations such as protein-protein interactions (PPI) from scientific texts. The aim is to enhance information retrieval by detecting relations between concepts, not just individual concepts as with a keyword search. In recent years, events have been proposed as a more detailed alternative for simple pairwise PPI relations. Events provide a systematic, structural representation for annotating the content of natural language texts. Events are characterized by annotated trigger words, directed and typed arguments and the ability to nest other events. For example, the sentence “Protein A causes protein B to bind protein C” can be annotated with the nested event structure CAUSE(A, BIND(B, C)). Converted to such formal representations, the information of natural language texts can be used by computational applications. Biomedical event annotations were introduced by the BioInfer and GENIA corpora, and event extraction was popularized by the BioNLP'09 Shared Task on Event Extraction. In this thesis we present a method for automated event extraction, implemented as the Turku Event Extraction System (TEES). A unified graph format is defined for representing event annotations and the problem of extracting complex event structures is decomposed into a number of independent classification tasks. These classification tasks are solved using SVM and RLS classifiers, utilizing rich feature representations built from full dependency parsing. Building on earlier work on pairwise relation extraction and using a generalized graph representation, the resulting TEES system is capable of detecting binary relations as well as complex event structures. We show that this event extraction system has good performance, reaching the first place in the BioNLP'09 Shared Task on Event Extraction. Subsequently, TEES has achieved several first ranks in the BioNLP'11 and BioNLP'13 Shared Tasks, as well as shown competitive performance in the binary relation Drug-Drug Interaction Extraction 2011 and 2013 shared tasks. The Turku Event Extraction System is published as a freely available open-source project, documenting the research in detail as well as making the method available for practical applications. In particular, in this thesis we describe the application of the event extraction method to PubMed-scale text mining, showing how the developed approach not only shows good performance, but is generalizable and applicable to large-scale real-world text mining projects. Finally, we discuss related literature, summarize the contributions of the work and present some thoughts on future directions for biomedical event extraction. This thesis includes and builds on six original research publications. The first of these introduces the analysis of dependency parses that leads to development of TEES. The entries in the three BioNLP Shared Tasks, as well as in the DDIExtraction 2011 task are covered in four publications, and the sixth one demonstrates the application of the system to PubMed-scale text mining.
Resumo:
The regular assessment of Brazilian scientific output means that individual university departments need to constantly improve the quantity and quality of their scientific output. A significant proportion of this output involves the work of Master’s and Doctoral students, but getting this work published in a suitable journal can often prove to be a challenge. Although students’ lack of fluency in English is a contributing factor, many of the problems observed have an early origin in the formulation of the research problem and its relevance to current research trends in the international literature. In short, more time needs to be spent in the library and less in the laboratory, and more effort needs to be made in teaching students basic research skills such as the effective use of bibliographic databases like PubMed, Web of Science and Scopus.
Resumo:
The purpose of this project was to identify in a subject group of engineers and technicians (N = 62) a preferred mode of representation for facilitating correct recall of information from complex graphics. The modes of representation were black and white (b&w) block, b&w icon, color block, and color icon. The researcher's test instrument included twelve complex graphics (six b&w and six color - three per mode). Each graphics presentation was followed by two multiple-choice questions. Recall performance was better using b&w block mode graphics and color icon mode graphics. A standardized test, the Group Embedded Figures Test (GEFT) was used to identify a cognitive style preference (field dependence). Although engineers and technicians in the sample were strongly field-independent, they were not significantly more field-independent than the normative group in the Witkin, Oltman, Raskin, and Karp study (1971). Tests were also employed to look for any significant difference in cognitive style preference due to gender. None was found. Implications from the project results for the design of visuals and their use in technical training are discussed.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Le domaine biomédical est probablement le domaine où il y a les ressources les plus riches. Dans ces ressources, on regroupe les différentes expressions exprimant un concept, et définit des relations entre les concepts. Ces ressources sont construites pour faciliter l’accès aux informations dans le domaine. On pense généralement que ces ressources sont utiles pour la recherche d’information biomédicale. Or, les résultats obtenus jusqu’à présent sont mitigés : dans certaines études, l’utilisation des concepts a pu augmenter la performance de recherche, mais dans d’autres études, on a plutôt observé des baisses de performance. Cependant, ces résultats restent difficilement comparables étant donné qu’ils ont été obtenus sur des collections différentes. Il reste encore une question ouverte si et comment ces ressources peuvent aider à améliorer la recherche d’information biomédicale. Dans ce mémoire, nous comparons les différentes approches basées sur des concepts dans un même cadre, notamment l’approche utilisant les identificateurs de concept comme unité de représentation, et l’approche utilisant des expressions synonymes pour étendre la requête initiale. En comparaison avec l’approche traditionnelle de "sac de mots", nos résultats d’expérimentation montrent que la première approche dégrade toujours la performance, mais la seconde approche peut améliorer la performance. En particulier, en appariant les expressions de concepts comme des syntagmes stricts ou flexibles, certaines méthodes peuvent apporter des améliorations significatives non seulement par rapport à la méthode de "sac de mots" de base, mais aussi par rapport à la méthode de Champ Aléatoire Markov (Markov Random Field) qui est une méthode de l’état de l’art dans le domaine. Ces résultats montrent que quand les concepts sont utilisés de façon appropriée, ils peuvent grandement contribuer à améliorer la performance de recherche d’information biomédicale. Nous avons participé au laboratoire d’évaluation ShARe/CLEF 2014 eHealth. Notre résultat était le meilleur parmi tous les systèmes participants.