994 resultados para Biology, Genetics|Chemistry, Biochemistry|Health Sciences, Immunology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Concerns about the quality of physician education have changed current medical education practices. Learners must demonstrate competency in core areas, rather than solely participating in educational activities. Academic medical institutions are challenged with identifying leaders to direct curricular and evaluation reforms. An innovative partnership between the University of Houston College of Education and Baylor College of Medicine, the University of Texas Medical School at Houston, and the University of Texas Dental Branch at Houston offers a Masters of Education in Teaching degree with an emphasis in Health Sciences. Courses encompass fundamental areas including curriculum, instruction, technology, measurement, research design and statistics. [See PDF for complete abstract]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Pancreatic cancer is the fourth leading cause of cancer-related death among males and females in the United States. Sel-1-like (SEL1L) is a putative tumor suppressor gene that is downregulated in a significant proportion of human pancreatic ductal adenocarcinoma (PDAC). It was hypothesized that SEL1L expression could be down-modulated by somatic mutation, loss of heterozygosity (LOH), CpG island hypermethylation and/or aberrantly expressed microRNAs (miRNAs). Material and methods: In 42 PDAC tumors, the SEL1L coding region was amplified using reverse transcription polymerase chain reaction (RT-PCR), and analyzed by agarose gel electrophoresis and sequenced to search for mutations. Using fluorescent fragment analysis, two intragenic microsatellites in the SEL1L gene region were examined to detect LOH in a total of 73 pairs of PDAC tumors and normal-appearing adjacent tissues. Bisulfite DNA sequencing was performed to determine the methylation status of the SEL1L promoter in 41 PDAC tumors and 6 PDAC cell lines. Using real-time quantitative PCR, the expression levels of SEL1L mRNA and 7 aberrantly upregulated miRNAs that potentially target SEL1L were assessed in 42 PDAC tumor and normal pairs. Statistical methods were applied to evaluate the correlation between SEL1L mRNA and the miRNAs. Further the interaction was determined by functional analysis using a molecular biological approach. Results: No mutations were detected in the SEL1L coding region. More than 50% of the samples displayed abnormally alternate or aberrant spliced transcripts of SEL1L. About 14.5% of the tumors displayed LOH at the CAR/CAL microsatellite locus and 10.7% at the RepIN20 microsatellite locus. However, the presence of LOH did not show significant association with SEL1L downregulation. No methylation was observed in the SEL1L promoter. Statistical analysis showed that SEL1L mRNA expression levels significantly and inversely correlated with the expression of hsa-mir-143, hsa-mir-155, and hsa-mir-223. Functional analysis indicated that hsa-mir-155 acted as a suppressor of SEL1L in PL18 and MDAPanc3 PDAC cell lines. Discussion: Evidence from these studies suggested that SEL1L was possibly downregulated by aberrantly upregulated miRNAs in PDAC. Future studies should be directed towards developing a better understanding of the mechanisms for generation of aberrant SEL1L transcripts, and further analysis of miRNAs that may downregulate SEL1L.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The family of membrane protein called glutamate receptors play an important role in the central nervous system in mediating signaling between neurons. Glutamate receptors are involved in the elaborate game that nerve cells play with each other in order to control movement, memory, and learning. Neurons achieve this communication by rapidly converting electrical signals into chemical signals and then converting them back into electrical signals. To propagate an electrical impulse, neurons in the brain launch bursts of neurotransmitter molecules like glutamate at the junction between neurons, called the synapse. Glutamate receptors are found lodged in the membranes of the post-synaptic neuron. They receive the burst of neurotransmitters and respond by fielding the neurotransmitters and opening ion channels. Glutamate receptors have been implicated in a number of neuropathologies like ischemia, stroke and amyotrophic lateral sclerosis. Specifically, the NMDA subtype of glutamate receptors has been linked to the onset of Alzheimer’s disease and the subsequent degeneration of neuronal cells. While crystal structures of AMPA and kainate subtypes of glutamate receptors have provided valuable information regarding the assembly and mechanism of activation; little is known about the NMDA receptors. Even the basic question of receptor assembly still remains unanswered. Therefore, to gain a clear understanding of how the receptors are assembled and how agonist binding gets translated to channel opening, I have used a technique called Luminescence Resonance Energy Transfer (LRET). LRET offers the unique advantage of tracking large scale conformational changes associated with receptor activation and desensitization. In this dissertation, LRET, in combination with biochemical and electrophysiological studies, were performed on the NMDA receptors to draw a correlation between structure and function. NMDA receptor subtypes GluN1 and GluN2A were modified such that fluorophores could be introduced at specific sites to determine their pattern of assembly. The results indicated that the GluN1 subunits assembled across each other in a diagonal manner to form a functional receptor. Once the subunit arrangement was established, this was used as a model to further examine the mechanism of activation in this subtype of glutamate receptor. Using LRET, the correlation between cleft closure and activation was tested for both the GluN1 and GluN2A subunit of the NMDA receptor in response to agonists of varying efficacies. These investigations revealed that cleft closure plays a major role in the mechanism of activation in the NMDA receptor, similar to the AMPA and kainate subtypes. Therefore, suggesting that the mechanism of activation is conserved across the different subtypes of glutamate receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin-2 activated lymphocytes, designated lymphokine-activated killers (LAK), acquire the unique capacity to express potent cytologic activity against a broad spectrum of abnormal and/or transformed NK-sensitive and NK-resistant target cells while sparing normal cell types. Investigations into the target spectra exhibited by cloned effector cells indicate that LAK cells express a polyspecific recognition mechanism that identifies an undefined class of cell surface-associated molecules expressed on susceptible targets. This report extends our previous investigations into the biochemical nature of these molecules by characterizing the functional role of two tumor cell-surface-associated epitopes implicated in conferring target cells with susceptibility to LAK-mediated cytotoxicity. The first moiety is implicated in the formation of effector/target cell conjugates. This binding ligand is preferentially expressed on tumor cells relative to LAK-resistant PBL target cells, sensitive to trypsin treatment, resistant to functional inactivation by heat- and detergent-induced conformational changes, and does not require N-linked glycosylation to maintain binding activity. In contrast, a carbohydrate-associated epitope represents the second tumor-associated molecule required for target cell susceptibility to LAK cells. Specifically, N-linked glyoprotein synthesis represents an absolute requirement for post-trypsin recovery of target cell susceptibility. The minimal N-linked oligosaccharide residue capable of restoring this second signal has been identified as a high mannose structure. Although ultimately required for tumor cell susceptibility, as measured in $\sp{51}$Cr-release assays, this N-glycan-associated molecule is not required for the differential tumor cell binding expressed by LAK cells. Furthermore, N-glycan expression is not adequate in itself to confer target cell susceptibility. Additional categories of cell surface components have been investigated, including O-linked oligosaccharides, and glycosaminoglycans, without identifying additional moieties relevant to target cell recognition. Collectively, these data suggest that tumor cell recognition by LAK cells is dependent on cell surface presentation of two epitopes: a trypsin-sensitive molecule that participates in the initial conjugate formation and an N-glycan-associated moiety that is involved in a post-binding event required for target cell killing. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultraviolet (UV) radiation produces immunological alterations in both humans and animals that include a decrease in the delayed type hypersensitivity (DTH) response to complex antigens, and to the induction of the suppressor T cell pathway. Cell-mediated immunity of the type that is altered by UV radiation has been shown to be important in host resistance against microorganisms. My dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans.^ The (DTH) response of C3H mice exposed to ultraviolet (UV) radiation before (afferent arm of DTH) or after (efferent arm of DTH) infection with Candida albicans was markedly and systemically suppressed. Although suppression of both the afferent and efferent phases of DTH were caused by similar wavebands within the ultraviolet region, the dose of UV radiation that suppressed the efferent arm of DTH was 10-fold higher than the dose that suppressed the afferent arm of the DTH reaction.^ The DTH response of C57BL/6 mice was also suppressed by UV radiation; however the suppression was accomplished by exposure to significantly lower doses UV radiation compared to C3H mice. In C57BL/6 mice, the dose of UV radiation that suppressed the afferent phase of DTH was 5-fold higher than the dose that suppressed the efferent phase.^ Exposure of C3H mice to UV radiation before sensitization induced splenic suppressor T cells that upon transfer to normal recipients, impaired the induction of DTH to Candida. In contrast, the suppression caused by UV irradiation of mice after sensitization was not transferable. Spleen cells from sensitized mice exhibited altered homing patterns in animals that were exposed to UV radiation shortly before receiving cells, suggesting that UV-induced suppression of the efferent arm of DTH could result from an alteration in the distribution of effector cells.^ UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the DTH response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organism from the kidneys of UV-irradiated mice.^ These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies were performed to test the hypothesis that type I hypersensitivity underlies worm induced intestinal fluid secretion and the rapid rejection of Trichinella spiralis from immunized rats, and the two events may be related in a cause-effect manner.^ Two approaches were taken. One was to determine whether inhibition of anaphylaxis-mediated Cl$\sp{-}$ and fluid secretion accompanying a secondary infection impedes worm rejection from immune hosts. The other was to determine whether induction of intestinal fluid secretion in nonimmune hosts interfered with worm establishment. In both studies, fluid secretion was measured volumetrically 30 min after a challenge infection and worms were counted.^ In immunized rats indomethacin did not affect the worm-induced fluid secretion when used alone, despite inhibiting mucosal prostaglandin synthesis. Fluid secretion was reduced by treatment with diphenhydramine and further reduced by the combination of diphenhydramine and indomethacin. The paradoxical effects of indomethacin when used alone compared with its coadministration with diphenhydramine is explained by the enhancing effect of indomethacin on histamine release. Abolishing net fluid secretion in these studies had no effect on rapid worm rejection in immune hosts.^ Worm establishment was reduced in recipients of immune serum containing IgE antibodies. Net intestinal fluid secretion induced in normal rats by PGE$\sb2$, cholera toxin, or hypertonic mannitol solution had no effect on worm establishment compared with untreated controls.^ In a related experiment, worm-induced intestinal fluid secretion and worm rejection in immune rats were partially blocked by concurrent injection with 5-HT$\sb2$ and 5-HT$\sb3$ blockers (Ketanserin and MDL-72222), suggesting that 5-HT is involved. This possible involvement was supported in that treatment of nonimmune rats with 5-HT significantly inhibited worm establishment in the intestine.^ Results indicate that anaphylaxis is the basis for both worm-induced intestinal fluid secretion and rapid rejection of T. spiralis in immune rats, but these events are independent of one another. 5-HT is a possible mediator of worm rejection, however, its mechanism of action is related to something other than fluid secretion. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heparanase, an endo-$\beta$-D-glucuronidase, has been associated with melanoma metastasis. Polyclonal antibodies directed against the murine N-terminal heparanase peptide detected a M$\sb{\rm r}\sim 97,000$ protein upon SDS-polyacrylamide gel electrophoresis of mouse melanoma and human melanoma cell lysates. In an indirect immunocytochemical study, metastatic human A375-SM and mouse B16-BL6 melanoma cells were stained with the anti-heparanase antibodies. Heparanase antigen was localized in the cytoplasm of permeabilized melanoma cells as well as at the cell surface of unpermeabilized cells. Immunohistochemical staining of frozen sections from syngeneic mouse organs containing micrometastases of B16-BL6 melanoma demonstrated heparanase localized in metastatic melanoma cells, but not in adjacent normal tissues. Similar studies using frozen sections of malignant melanomas resected from patients indicated that heparanase is localized in invading melanoma cells, but not in adjacent connective tissues.^ Monoclonal antibodies directed against murine heparanase were developed and characterized. Monoclonal antibody 10E5, an IgM, precipitated and inhibitated the enzymatic activity of heparanase. A 2.6 kb cDNA was isolated from a human melanoma $\lambda$gt11 cDNA library using the monoclonal antibody 10E5. Heparan sulfate cleavage activity was detected in the lysogen lysates from E. Coli Y1089 infected with the $\lambda$gt11 cDNA and this activity was inhibited in the presence of 10-fold excess of heparin, a potent inhibitor of heparanase. The nucleotide sequence of the cDNA was determined and insignificant homology was found with the gene sequences currently known. The cDNA hybridized to a 3.2-3.4 kb mRNA in human A375 melanoma, WI-38 fibroblast, and THP-1 leukemia cells using Northern blots.^ Heparanase expression was examined using Western and Northern blots. In comparison to human A375-P melanoma cells, the quantity of 97,000 protein recognized by the polyclonal anti-heparanase antibodies doubled in the metastatic variant A375-SM cells and the quantity of 3.2-3.4 kb mRNA doubled in A375MetMix, a metastatic variant similar to A375-SM cells. In B16 murine melanoma cell, the intensity of the 97,000 protein increased more than 2 times comparing with B16-F1 cells. The extent in the increase of the protein and the mRNA levels is comparable to the change of heparanase activity observed in those cells.^ In summary, the studies suggest that (a) the N-terminus of the heparanase molecule in mouse and human is antigenically related; (b) heparanase antigens are localized at the cell surface and in the cytoplasm of metastatic human and mouse melanoma cells; (c) heparanase antigens are localized in invasive and metastatic murine and human melanomas in vivo, but not in adjacent normal tissues; (d) heparanase molecule appeared to be differentially expressed at the transcriptional as well as at the translational level; and (e) the size of human heparanase mRNA is 3.2-3.4 kilobase. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to investigate the immunochemical nature of the polyclonal immune response to the 14mer peptide TINKEDDESPGLYG and to identify interactions among antibodies to more than one epitope. Two groups of rabbits were immunized with the 14mer peptide and a Keyhole Limpet hemocyanin (KLH) carrier, but with KLH attached either to the 14mer's N- or C-terminus. Two approximate epitopes were mapped by an antibody-capture enzyme-linked immunosorbent assay method using antiserum obtained when KLH was oriented on the C-terminus of the 14mer. A precise mapping of the epitopes performed with inhibition enzyme immunoassays (iEIAs) resulted in an N-terminal 6mer epitope TINKED and a C-terminal 10mer epitope EDDESPGLYG. The epitopes overlapped by two amino acids. IEIAs and iEIAs incorporating antibody-blocking peptides indicated that the two anti-epitope antibody fractions did not interfere with one anothers' epitope binding. It was postulated that the anti-TINKED and anti-EDDESPGLYG antibody fractions individually bind their respective hydrophobic epitope "core" region at the N- or C-terminal of peptide TINKEDDESPGLYG, while sharing the two hydrophilic overlap amino acids. This antibody "lap joint" binding interaction can be accomplished by each of the anti-epitope antibodies binding an opposite side of the epitope overlap region in the shallow periphery of its binding site. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monocyte developmental heterogeneity is reflected at the cellular level by differential activation competence, at the molecular level by differential regulation of gene expression. LPS activates monocytes to produce tumor necrosis factor-$\alpha$ (TNF). Events occurring at the molecular level necessary for TNF regulation have not been elucidated, but depend both on activation signals and the maturation state of the cell: Peripheral blood monocytes produce TNF upon LPS stimulation, but only within the first 72 hours of culture. Expression of c-fos is associated with monocytic differentiation and activation; the fos-associated protein, c-jun, is also expressed during monocyte activation. Increased cAMP levels are associated with down regulation of macrophage function, including LPS-induced TNF transcription. Due to these associations, we studied a region of the TNF promoter which resembles the binding sites for both AP-1(fos/jun) and CRE-binding protein (or ATF) in order to identify potential molecular markers defining activation competent populations of monocytic cells.^ Nuclear protein binding studies using extracts from THP-1 monocytic cells stimulated with LPS, which stimulates, or dexamethasone (Dex) or pentoxyfilline (PTX), which inhibit TNF production, respectively, suggest that a low mobility doublet complex may be involved in regulation through this promoter region. PTX or Dex increase binding of these complexes equivalently over untreated cells; approximately two hours after LPS induction, the upper complex is undetectable. The upper complex is composed of ATF2 (CRE-BP1); the lower is a heterodimer of jun/ATF2. LPS induces c-jun and thus may enhance formation of jun-ATF2 complexes. The simultaneous presence of both complexes may reduce the amount of TNF transcription through competitive binding, while a loss of the upper (ATF2) and/or gain of the lower (jun-ATF2) allow increased transcription. AP-1 elements generally transduce signals involving PKC; the CRE mediates a cAMP response, involving PKA. Thus, this element has the potential of receiving signals through divergent signalling pathways. Our findings also suggest that cAMP-induced inhibition of macrophage functions may occur via down regulation of activation-associated genes through competitive binding of particular cAMP-responsive nuclear protein complexes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most tissue-invasive parasitic helminths prime for type 1 hypersensitivity or anaphylaxis during some phase of their life cycles. A prototype in this regard is the nematode Trichinella spiralis. Blood protozoa capable of tissue invasion, such as Trypanosoma brucei, might also be expected to prime for the expression of anaphylaxis. However, this response is usually absent in protozoal infections. The hypothesis tested was that failure of hosts infected with T.brucei to express anaphylaxis is related to this parasite's ability to selectively down-regulate immunoglobulin E (IgE) production, and not to an innate lack of allergenicity on the part of T.brucei-derived antigens. This hypothesis was tested by studying in the intestine of rats, antigen-induced Cl$\sp-$ secretion, which results from a local anaphylactic response mediated by IgE and mucosal mast cells. The Cl$\sp-$ secretory response can be primed either by infection with T.spiralis or by the parenteral administration of antigen. Anaphylaxis-induced Cl$\sp-$ secretion is expressed in vitro, and can be quantified electrophysiologically, as a change in transmural short-circuit current when sensitized intestine is mounted in Ussing chambers and challenged with the sensitizing antigen.^ Rats injected parenterally with trypanosome antigen elicited intestinal anaphylaxis in response to antigenic challenge. In contrast, the intestine of rats infected with T.brucei failed to respond to challenge with trypanosome antigen. Infection with T.brucei also suppressed antigen-induced Cl$\sp-$ secretion in rats sensitized and challenged with various antigens, including T.spiralis antigen. However, T.brucei infection did not inhibit the anaphylactic response in rats concomitantly infected with T.spiralis. Relative to the anaphylactic mediators, T.brucei infection blocked production of IgE in rats parenterally injected with antigen but not in T.spiralis-infected hosts. Also, the mucosal mastocytosis normally associated with trichinosis was unaffected by the trypanosome infection. These results support the conclusion that the failure to express anaphylaxis-mediated Cl$\sp-$ secretion in T.brucei infected rats, is due to this protozoan's ability to inhibit IgE production and not to the lack of allergenicity of trypanosome antigens. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rubella virus (RV) typically causes a mild childhood illness, but complications can result from both viral and immune-mediated pathogenesis. RV can persist in the presence of neutralizing antibodies, suggesting that cell-mediated immune responses may be necessary for viral clearance. However, the molecular determinants recognized by RV-specific T-cells have not been identified. Using recombinant proteins which express the entire RV structural open reading frame in proliferation assays with lymphocytes of RV-immune individuals, domains which elicit major histocompatibility complex class II-restricted helper T-cells were identified. Synthetic peptides representing these domains were used to define specific epitopes. Two immunodominant domains were mapped to the capsid protein sequence C$\sb1$-C$\sb{29}$ and the E1 glycoprotein sequence E1$\sb{202}$-E1$\sb{283}.$ RV-specific MHC class I-restricted cytotoxic T lymphocytes (CTLs) were identified using a chromium-release assay with infected fibroblasts as target cells. An infectious Sindbis virus vector expressing each of the RV structural proteins identified the capsid, E2 and E1 proteins as targets of CTLs. Specific CTL epitopes were mapped within the previously identified immunodominant domains. This study identified domains of the RV structural proteins that may be beneficial for development of a synthetic vaccine, and provides normative data on RV-specific T-cell responses that should enhance our ability to understand RV persistence and associated complications. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibition of local host immune reactions is one mechanism contributing to tumor progression. To determine if alterations in local immune functioning occur during colon carcinogenesis, a model mucosal immune response, type I hypersensitivity against the intestinal parasite Trichinella spiralis, was first characterized in normal mice and then examined during experimental colon carcinogenesis. Segments of sensitized colon mounted in Ussing chambers and challenged with T. spiralis-derived antigen resulted in a rise in short-circuit current ($\rm\Delta I\sb{sc}$) that was antigen-specific and inhibited by furosemide, implicating epithelial Cl$\sp-$ secretion as the ionic mechanism. The immune-regulated Cl$\sp-$ secretion by colonic epithelial cells required the presence of mast cells with surface IgE. Inhibition of potential anaphylactic mediators with various pharmacological agents in vitro implicated prostaglandins and leukotrienes as the principal mediators of the antigen-induced $\rm\Delta I\sb{sc}$, with 5-hydroxytryptamine also playing a role. Distal colon from immune mice fed an aspirin-containing diet (800 mg/kg powdered diet) ad libitum for 6 wk had a decreased response to antigen, confirming the major role of prostaglandins in generating the colonic I$\sb{\rm sc}$. To determine the effects of early stages of colon carcinogenesis on this mucosal immune response, mice were immunized with T. spiralis 1 day after or 8 wk prior to the first of 6 weekly injections of the procarcinogen 1,2-dimethylhydrazine (DMH). Responsiveness to antigenic challenge was suppressed in the distal colon 4-6 wk after the final injection of DMH. One injection of DMH was not sufficient to inhibit antigen responsiveness. The colonic epithelium remained sensitive to direct stimulation by exogenous Cl$\sp-$ secretagogues. Decreased antigen-induced $\rm\Delta I\sb{sc}$ in the distal colon was not due to systemic immune suppression by DMH, as the proximal colon and jejunum maintained responsiveness to antigen. Also, rejection of a secondary T. spiralis infection from the small intestine was not altered. Tumors eventually developed 25-30 wk after the final injection of DMH only in the distal portions of the colon. These results suggest that early stages of DMH-induced colon carcinogenesis manipulate the microenvironment such that mucosal immune function, as measured by immune-regulated Cl$\sp-$ secretion, is suppressed in the distal colon, but not in other regions of the gut. Future elucidation of the mechanisms by which this localized inhibition of immune-mediated ion transport occurs may provide possible clues to the microenvironmental changes necessary for tumor progression in the distal colon. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor specific immunity is mediated by cytotoxic T lymphocytes (CTL) that recognize peptide antigen (Ag) in the context of major histocompatibility complex (MHC) class I molecules and by helper T (Th) lymphocytes that recognize peptide Ag in the context of MHC class II molecules. The purpose of this study is (1) to induce or augment the immunogenicity of nonimmunogenic or weakly immunogenic tumors by genetic modification of tumor cells, and (2) to use these genetically altered cells in cancer immunotherapy. To study this, I transfected a highly tumorigenic murine melanoma cell line (K1735) that did not express constitutively either MHC class I or II molecules with syngeneic cloned MHC class I and/or class II genes, and then determined the tumorigenicity of transfected cells in normal C3H mice. K1735 transfectants expressing either $\rm K\sp{k}$ or $\rm A\sp{k}$ molecules alone produced tumors in normal C3H mice, whereas most transfectants that expressed both molecules were rejected in normal C3H mice but produced tumors in nude mice. The rejection of K1735 transfectants expressing $\rm K\sp{k}$ and $\rm A\sp{k}$ Ag in normal C3H mice required both $\rm CD4\sp+$ and $\rm CD8\sp+$ T cells. Interestingly, the $\rm A\sp{k}$ requirement can be substituted by IL-2 because transfection of $\rm K\sp{k}$-positive/A$\sp{\rm k}$-negative K1735 cells with the IL-2 gene also resulted in abrogation of tumorigenicity in normal C3H mice but not in nude mice. In addition, 1735 $(\rm I\sp+II\sp+)$ transfected cells can function as antigen presenting cells (APC) since they could process and present native hen egg lysozyme (HEL) to HEL specific T cell hybridomas. Furthermore, the transplantation immunity induced by K1735 transfectants expressing both $\rm K\sp{k}$ and $\rm A\sp{k}$ molecules completely cross-protected mice against challenge with $\rm K\sp{k}$-positive transfectants but weakly protected them against challenge with parental K1735 cells or $\rm A\sp{k}$-positive transfectants. Finally, I demonstrated that MHC $(\rm I\sp+II\sp+)$ or $\rm K\sp{k}$-positive/IL-2-positive cells can function as anti-cancer vaccines since they can abrogate the growth of established tumors and metastasis.^ In summary, my results indicate that expression of either MHC class I or II molecule alone is insufficient to cause the rejection of K1735 melanoma in syngeneic hosts and that both molecules are necessary. In addition, my data suggest that the failure of $\rm K\sp{k}$-positive K1735 cells to induce a primary tumor-rejection response in normal C3H mice may be due to their inability to induce the helper arm of the anti-tumor immune response. Finally, the ability of MHC $(\rm I\sp+II\sp+)$ or $\rm K\sp{k}$-positive/IL-2-positive cells to prevent growth of established tumors or metastasis suggests that these cell lines can serve as potential vaccines for the immunotherapy of cancer. (Abstract shortened by UMI.) ^