69 resultados para Bioglass


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The radiographic characteristics of a biomaterial, such as its density, may influence the evaluation of the results obtained following its clinical use. Objective: The aim of this study was to evaluate the radiographic density of biomaterials used as bone substitutes, inserted into dental sockets and bone defects in created in the jaws of pigs. The influence of a soft tissue simulator on the results was also evaluated. Material and method: Two and three-millimeter-deep bone defects were created in the pigs mandible and the right first molar extraction socket were used. Commercial samples of five biomaterials were tested: Hydroxyapatite, Lyophilized Bovine Bone, 45S5 bioglass (generic), PerioGlass and β-Tri-Calcium Phosphate, and compared to a positive (mandibular bone) and negative (empty alveolar bone defects) controls. Radiographic images were acquired with and without a 10 mm thick soft-tissue simulator. Result: The results for the extraction sockets showed no differences between the biomaterials and the negative control. For the bone defects, the depth of the defect density influenced the density, both in the negative control (p < 0.01) and biomaterials (p < 0.05) groups. The soft- tissue simulator did not alter the results. Conclusion: The type of the evaluated defect can interfere in the radiographic features presented by each biomaterial, while the simulation of soft tissues was not statistically significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to assess the bone repair process of crystallized Biosilicate in surgically created defects on rats' calvaria. This biomaterial was recently developed for odontological use. We used fifteen rats (rattus norvegicus albinus, Wistar), and two 5 mm surgical defects were performed on each of them; the defects were made with trephine drill on the calvarium region prior to the biomaterial placement. Groups were divided as follows: Group 1-defect filled with clot; Group 2-defect filled with crystallized Biosilicate. After 7, 14 and 28 days the animals were killed, the parts were retrieved and slides were prepared for histological studies. Bone formation was satisfactory in all groups, with direct contact between biomaterial surface and bone and absence of infection signs. The 28 days periods showed better results, and statistically significant difference between Clot Group (90.2 %) and Biosilicate (58 %; p = 0.002) was seen, regarding presence of bone tissue on the surgical defects. Our study revealed that defects filled with clot present better results on bone formation compared to crystallized Biosilicate, which is considered a biocompatible material with favorable osteoconductive properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJETIVO: Avaliar experimentalmente a biocompatibilidade de cones de biovidro e biovitrocerâmico em cavidades evisceradas de coelhos. MÉTODOS: Foram utilizados 45 coelhos albinos submetidos à cirurgia de evisceração do olho direito, seguida da inclusão de cones de biovidro e dois tipos de biovitrocerâmicos (chamados de FI e FII) na cavidade escleral. Os animais foram sacrificados em três momentos (7, 90 e 180 dias). Os parâmetros avaliados foram: peso, exame clínico diário, exames bioquímicos, avaliação histológica, exame morfométrico. RESULTADOS: Os animais mantiveram-se saudáveis durante o experimento, não tendo ocorrido extrusão do implante em nenhum animal. O exame morfológico mostrou que houve a formação de pseudocápsula ao redor dos cones, com superioridade dos cones de biovidro e biovitrocerâmico FI, os quais apresentaram menor reação inflamatória e menor formação da pseudocápsula ao redor dos cones que os demais. A reação inflamatória foi mais intensa após 7 dias da colocação dos cones, diminuindo em direção aos 180 dias, sendo menos intensa nos coelhos que receberam cones de biovidro. CONCLUSÃO: Os cones de biovidro e biovitrocerâmico FI e FII podem ser úteis para a reparação da cavidade anoftálmica, com melhor resposta quando se usa cones de biovidro e de biovitrocerâmico FI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the effect of the indentation load on the results of hardness and fracture toughness, determined by Vickers micro-hardness measurements, of some glasses and glass-ceramics has been investigated. Furthermore, in order to verify the effect of crystallinity on the results, glasses of composition 52.75 wt.% 3CaO center dot P2O5, 30 wt.% SiO2 and 17.25 wt.% MgO were fused at 1600 degrees C for 4 h and annealed at 700 degrees C for 2h, and further heat-treated at 700, 775, 800 and 900 degrees C for 4h. The obtained materials were analyzed by high resolution X-ray diffraction, HRXRD, to determine the crystallization degree in function of the heat-treatment temperature. The hardness of the different specimens was determined by Vickers' micro-hardness measurements under various loads. It has been observed that with increasing crystallization of the materials their hardness increased. Furthermore, it has been possible to verify the so-called indentation size effect (ISE), i.e. hardness decreases as the indentation depth, under higher loads, increases. This effect has been more pronounced in the glass-ceramic samples. Fracture toughness has been determined by the crack length induced by the Vickers indentations and relating them to the applied loads. Glass materials presented a fracture pattern with characteristics of cleavage, forming cracks of the half-penny shaped type, while the glass-ceramic materials exhibited crack bridging effects and Palmqvist type cracks. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue engineering and regenerative medicine have emerged in an effort to generate replacement tissues capable of restoring native tissue structure and function, but because of the complexity of biologic system, this has proven to be much harder than originally anticipated. Silica based bioactive glasses are popular as biomaterials because of their ability to enhance osteogenesis and angiogenesis. Sol-gel processing methods are popular in generating these materials because it offers: 1) mild processing conditions; 2) easily controlled structure and composition; 3) the ability to incorporate biological molecules; and 4) inherent biocompatibility. The goal of this work was to develop a bioactive vaporization system for the deposition of silica sol-gel particles as a means to modify the material properties of a substrate at the nano- and micro- level to better mimic the instructive conditions of native bone tissue, promoting appropriate osteoblast attachment, proliferation, and differentiation as a means for supporting bone tissue regeneration. The size distribution, morphology and degradation behavior of the vapor deposited sol-gel particles developed here were found to be dependent upon formulation (H2O:TMOS, pH, Ca/P incorporation) and manufacturing (substrate surface character, deposition time). Additionally, deposition of these particles onto substrates can be used to modify overall substrate properties including hydrophobicity, roughness, and topography. Deposition of Ca/P sol particles induced apatite-like mineral formation on both two- and three-dimensional materials when exposed to body fluids. Gene expression analysis suggests that Ca/P sol particles induce upregulation osteoblast gene expression (Runx2, OPN, OCN) in preosteoblasts during early culture time points. Upon further modification-specifically increasing particle stability-these Ca/P sol particles possess the potential to serve as a simple and unique means to modify biomaterial surface properties as a means to direct osteoblast differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A complexidade de desenvolver novas tecnologias para aplicações em reconstituição óssea se deve à necessidade de combinar várias propriedades químicas e físicas para que o material proporcione o desempenho almejado. Particularmente, em aplicações que visam osteogênese, os enxertos sintéticos devem ser bioativos, possuir porosidade com volume, geometria e interconectividade de poros controlados, além de ter boas propriedades mecânicas, dentro de limites relativamente rígidos. Por essa razão, o recobrimento de materiais bioinertes com cerâmicas bioativas se tornou o foco da presente pesquisa. O objetivo desse estudo foi desenvolver um novo método de produção de enxertos cerâmicos com macroporosidade funcionalizada, onde a formação e o revestimento dos poros são realizados em uma única etapa. Foi realizado o estudo de recobrimento com vidro bioativo e fosfato de cálcio. Para isso, agentes porogênicos na forma de grânulos (de 600 μm a 2 mm de diâmetro) foram sintetizados pelo método da gelificação de uma solução aquosa de alginato de sódio gotejada em solução de nitrato de cálcio (0,5 M), com incorporação de outros elementos para a formação de biovidro ou fosfato de cálcio. Esses grânulos foram conglomerados a um vidro ou alumina em pó, formando um compósito, que foi tratado termicamente para sinterização e formação de poros. No caso da matriz vítrea, a sinterização ocorreu com cristalização simultânea e concorrente. As cerâmicas resultantes foram caracterizadas por microscopia óptica e eletrônica de varredura, sendo possível observar a formação de macroporos aproximadamente esféricos (de 600 μm a 2 mm de diâmetro) revestidos internamente por uma camada de material com possível composição bioativa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nickel and cobalt are both known to stimulate the hypoxia-inducible factor-1 (HIF-1a), thus significantly improving blood vessel formation in tissue engineering applications. We have manufactured nickel and cobalt doped bioactive glasses to act as a controlled delivery mechanism of these ions. The resultant structural consequences have been investigated using the methods of isotopic and isomorphic substitution applied to neutron diffraction. The structural sites present will be intimately related to their release properties in physiological fluids such as plasma and saliva, and hence the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimising material design. Results show that nickel and cobalt adopt a mixed structural role within these bioactive glasses occupying both network-forming (tetrahedral) and network-modifying (5-fold) geometries. Two thirds of the Ni (or Co) occupies a five-fold geometry with the remaining third in a tetrahedral environment. A direct comparison of the primary structural correlations (e.g. Si-O, Ca-O, Na-O and O-Si-O) between the archetypal 45S5 Bioglass® and the Ni and Co glasses studied here reveal no significant differences. This indicates that the addition of Ni (or Co) will have no adverse effects on the existing structure, and thus on in vitro/in vivo dissolution rates and therefore bioactivity of these glasses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new family of multifunctional scaffolds, incorporating selected biopolymer coatings on basic Bioglass® derived foams has been developed. The polymer coatings were investigated as carrier of vancomycin which is a suitable drug to impart antibiotic function to the scaffolds. It has been proved that coating with PLGA (poly(lactic-co-glycolic acid)) with dispersed vancomycin-loaded microgels provides a rapid delivery of drug to give antibacterial effects at the wound site and a further sustained release to aid mid to long-term healing. Furthermore, the microgels also improved the bioactivity of the scaffolds by acting as nucleation sites for the formation of HA crystals in simulated body fluid. © 2013 Elsevier B.V. All rights reserved.