932 resultados para Bio medical Applications
Resumo:
This Habilitationsschrift (Habilitation thesis) is focused on my research activities on medical applications of particle physics and was written in 2013 to obtain the Venia Docendi (Habilitation) in experimental physics at the University of Bern. It is based on selected publications, which represented at that time my major scientific contributions as an experimental physicist to the field of particle accelerators and detectors applied to medical diagnostics and therapy. The thesis is structured in two parts. In Part I, Chapter 1 presents an introduction to accelerators and detectors applied to medicine, with particular focus on cancer hadrontherapy and on the production of radioactive isotopes. In Chapter 2, my publications on medical particle accelerators are introduced and put into their perspective. In particular, high frequency linear accelerators for hadrontherapy are discussed together with the new Bern cyclotron laboratory. Chapter 3 is dedicated to particle detectors with particular emphasis on three instruments I contributed to propose and develop: segmented ionization chambers for hadrontherapy, a proton radiography apparatus with nuclear emulsion films, and a beam monitor detector for ion beams based on doped silica fibres. Selected research and review papers are contained in Part II. For copyright reasons, they are only listed and not reprinted in this on-line version. They are available on the websites of the journals.
Resumo:
The surface behaviour of materials is crucial to our everyday lives. Studies of the corrosive, reactive, optical and electronic properties of surfaces are thus of great importance to a wide range of industries including the chemical and electronics sectors. The surface properties of polymers can also be tuned for use in packaging, non stick coatings or for use in medical applications. Methods to characterise surface composition and reactivity are thus critical to the development of next generation materials. This report will outline the basic principles of X-ray photoelectron spectroscopy and how it can be applied to analyse the surfaces of inorganic materials. The role of XPS in understanding the nature of the active site in heterogeneous catalysts will also be discussed.
Resumo:
The aim of this study was to investigate the adhesive properties of an in-house amino-propyltrimethoxysilane-methylenebisacrylamide (APTMS-MBA) siloxane system and compare them with a commercially available adhesive, n-butyl cyanoacrylate (nBCA). The ability of the material to perform as a soft tissue adhesive was established by measuring the physical (bond strength, curing time) and biological (cytotoxicity) properties of the adhesives on cartilage. Complementary physical techniques, X-ray photoelectron spectroscopy, Raman and infrared imaging, enabled the mode of action of the adhesive to the cartilage surface to be determined. Adhesion strength to cartilage was measured using a simple butt joint test after storage in phosphate-buffered saline solution at 37°C for periods up to 1 month. The adhesives were also characterised using two in vitro biological techniques. A live/dead stain assay enabled a measure of the viability of chondrocytes attached to the two adhesives to be made. A water-soluble tetrazolium assay was carried out using two different cell types, human dermal fibroblasts and ovine meniscal chondrocytes, in order to measure material cytotoxicity as a function of both supernatant concentration and time. IR imaging of the surface of cartilage treated with APTMS-MBA siloxane adhesive indicated that the adhesive penetrated the tissue surface marginally compared to nBCA which showed a greater depth of penetration. The curing time and adhesion strength values for APTMS-MBA siloxane and nBCA adhesives were measured to be 60 s/0.23 MPa and 38 min/0.62 MPa, respectively. These materials were found to be significantly stronger than either commercially available fibrin (0.02 MPa) or gelatin resorcinol formaldehyde (GRF) adhesives (0.1 MPa) (P <0.01). Cell culture experiments revealed that APTMS-MBA siloxane adhesive induced 2% cell death compared to 95% for the nBCA adhesive, which extended to a depth of approximately 100-150 μm into the cartilage surface. The WST-1 assay demonstrated that APTMS-MBA siloxane was significantly less cytotoxic than nBCA adhesive as an undiluted conditioned supernatant (P <0.001). These results suggest that the APTMS-MBA siloxane may be a useful adhesive for medical applications. © VSP 2005.
Resumo:
This dissertation presents and evaluates a methodology for scheduling medical application workloads in virtualized computing environments. Such environments are being widely adopted by providers of "cloud computing" services. In the context of provisioning resources for medical applications, such environments allow users to deploy applications on distributed computing resources while keeping their data secure. Furthermore, higher level services that further abstract the infrastructure-related issues can be built on top of such infrastructures. For example, a medical imaging service can allow medical professionals to process their data in the cloud, easing them from the burden of having to deploy and manage these resources themselves. In this work, we focus on issues related to scheduling scientific workloads on virtualized environments. We build upon the knowledge base of traditional parallel job scheduling to address the specific case of medical applications while harnessing the benefits afforded by virtualization technology. To this end, we provide the following contributions: (1) An in-depth analysis of the execution characteristics of the target applications when run in virtualized environments. (2) A performance prediction methodology applicable to the target environment. (3) A scheduling algorithm that harnesses application knowledge and virtualization-related benefits to provide strong scheduling performance and quality of service guarantees. In the process of addressing these pertinent issues for our target user base (i.e. medical professionals and researchers), we provide insight that benefits a large community of scientific application users in industry and academia. Our execution time prediction and scheduling methodologies are implemented and evaluated on a real system running popular scientific applications. We find that we are able to predict the execution time of a number of these applications with an average error of 15%. Our scheduling methodology, which is tested with medical image processing workloads, is compared to that of two baseline scheduling solutions and we find that it outperforms them in terms of both the number of jobs processed and resource utilization by 20–30%, without violating any deadlines. We conclude that our solution is a viable approach to supporting the computational needs of medical users, even if the cloud computing paradigm is not widely adopted in its current form.
Resumo:
A Waveguide Microgripper utilizes flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection or fluorescence. One of the simplest capabilities of the waveguide microgripper is to be able to detect the presence of a microobject between the microgripper facets by monitoring the transmitted intensity of light coupled through the facets. The intensity of coupled light is expected to drop when there is an object obstructing the path of light. The optical sensing and characterization function of the microgripper is a strong function of the optical power incident on the structure of interest. Hence it is important to understand the factors affecting the power distribution across the facet. The microgripper is also capable of detecting the fluorescence. This capability of microgripper is expected to have applications in medical, bio-medical and related fields.
Resumo:
Currently, there is increasing use of nanomaterials in the food industry thanks to the many advantages offered and make the products that contain them more competitive in the market. Their physicochemical properties often differ from those of bulk materials, which require specialized risk assessment. This should cover the risks to the health of workers and consumers as well as possible environmental risks. The risk assessment methods must go updating due to more widespread use of nanomaterials, especially now that are making their way down to consumer products. Today there is no specific legislation for nanomaterials, but there are several european dispositions and regulations that include them. This review gives an overview of the risk assessment and the existing current legislation regarding the use of nanotechnology in the food industry.
Resumo:
The development of organic materials with 2PA has attracted intensive attention in the past two decades [1]. In two-photon bio-imaging applications the design of the chromophore requires to have a good cross-section (σ2PA) and good biological compatibility which depends on the molecular volume and polarity [2]. In this work, we present the design, synthesis and characterization of new indolium derivatives. These compounds are easy to achieve with good yields and good photophysical properties. In addition, time-dependent density functional theory (TDDFT) has been carried out to investigate the energy level of the ground and excited state. Their spectral properties and assays performed on cultured cells, demonstrate the potential of these compounds as fluorescent probes with application in two-photon bio-imaging.
Resumo:
Background: Androgenic anabolic steroids (AAS) are synthetic hormone derivatives of testosterone and are mainly used to enhance athletic performance and muscle mass, but medical applications also have been described. Short- and long-term side effects have been demonstrated in many organs, but the liver adverse effects are the most common and serious ones associated with AAS use. However, these effects have been supported by few clinical and experimental studies. Objective: To evaluate the hepatic function and structure after 5 wk of nandrolone decanoate administration at three different doses. Methods: Twenty-seven adult male Wistar rats were randomly assigned to the following groups: control, clinical, intermediate, and suprapharmacological doses of nandrolone decanoate during 5 wk. Results: The biochemical studies showed that nandrolone decanoate administration leads to a dose-dependent increase in serum levels of the aspartate aminotransferase (AST) (P < 0.05), alanine aminotransferase (ALT) (P < 0.01), and alkaline phosphatase (ALP) (P < 0.001), as well as a significant decrease in total proteins (P < 0.01), bilirubin (P < 0.05), total cholesterol and fractions (P < 0.05), and triglycerides (P < 0.05). Although a significant statistical difference was found for AST, ALT, and ALP when compared with the control group, their values remained within the normal range. The number of Kupffer cells was increased in the liver parenchyma (P < 0.05), and the content of collagen was increased in the central lobular vein wall, in the hepatic parenchyma, and in the portal space (P < 0.05). Conclusions: These results suggest that subchronic treatment with nandrolone decanoate, mainly administered at higher-than-clinical doses, are potentially deleterious to the liver, leading to incipient fibrosis.
Resumo:
In this paper we will analyse the usage of FTA to support decision-making in employment policy relate to specific occupational groups. The examples can be better understood if one focus on the nanotechnology and its implications on some sectors (clothing, bio-medical engineering, micro-electronics). When this is done will be clear which occupations will engage a restructuring process (engineers, specialised technicians, qualified machine operators, quality controllers) and what policies are being designed to cope with it. This means toward which extend social partners have driven specific policies on these issues (focused in their sectors).
Resumo:
An aneurysm is a localized blood-filled dilatation of an artery whose consequences can be deadly. One of its current treatments is endovascular aneurysm repair, a minimally invasive procedure in which an endoprosthesis, called a stent-graft, is placed transluminally to prevent wall rupture. Early stent-grafts were custom designed for the patient through the assembling of off-the-shelf components by the operating surgeon. However, nowadays, stent-grafts have become a commercial product. The existing endoprostheses differ in several aspects, such as shape design and materials, but they have in common a metallic scaffold with a polymeric covering membrane. This article aims to gather relevant information for those who wish to understand the principles of stent-grafts and even to develop new devices. Hence, a stent-graft classification based on different characteristics is presented and the desired features for an ideal device are pointed out. Additionally, the materials currently in use to fabricate this type of endoprosthesis are reviewed and new materials are suggested.
Resumo:
Wireless Body Area Networks (WBANs) have emerged as a promising technology for medical and non-medical applications. WBANs consist of a number of miniaturized, portable, and autonomous sensor nodes that are used for long-term health monitoring of patients. These sensor nodes continuously collect information of patients, which are used for ubiquitous health monitoring. In addition, WBANs may be used for managing catastrophic events and increasing the effectiveness and performance of rescue forces. The huge amount of data collected by WBAN nodes demands scalable, on-demand, powerful, and secure storage and processing infrastructure. Cloud computing is expected to play a significant role in achieving the aforementioned objectives. The cloud computing environment links different devices ranging from miniaturized sensor nodes to high-performance supercomputers for delivering people-centric and context-centric services to the individuals and industries. The possible integration of WBANs with cloud computing (WBAN-cloud) will introduce viable and hybrid platform that must be able to process the huge amount of data collected from multiple WBANs. This WBAN-cloud will enable users (including physicians and nurses) to globally access the processing and storage infrastructure at competitive costs. Because WBANs forward useful and life-critical information to the cloud – which may operate in distributed and hostile environments, novel security mechanisms are required to prevent malicious interactions to the storage infrastructure. Both the cloud providers and the users must take strong security measures to protect the storage infrastructure.
Resumo:
Biosensors have opened new horizons in biomedical analysis, by ensuring increased assay speed and flexibility, and allowing point-of-care applications, multi-target analyses, automation and reduced costs of testing. This has been a result of many studies merging nanotechnology with biochemistry over the years, thereby enabling the creation of more suitable environments to biological receptors and their substitution by synthetic analogue materials. Sol-gel chemistry, among other materials, is deeply involved in this process. Sol-gel processing allows the immobilization of organic molecules, biomacromolecules and cells maintaining their properties and activities, permitting their integration into different transduction devices, of electrochemical or optical nature, for single or multiple analyses. Sol-gel also allows to the production of synthetic materials mimicking the activity of natural receptors, while bringing advantages, mostly in terms of cost and stability. Moreover, the biocompatibility of sol-gel materials structures of biological nature allowed the use of these materials in emerging in vivo applications. In this chapter, biosensors for biomedical applications based on sol-gel derived composites are presented, compared and described, along with current emerging applications in vivo, concerning drug delivery or biomaterials. Sol-gel materials are shown as a promising tool for current, emerging and future medical applications. - See more at: http://www.eurekaselect.com/127191/article#sthash.iPqqyhox.dpuf
Resumo:
IEEE International Conference on Communications (IEEE ICC 2015). 8 to 12, Jun, 2015, IEEE ICC 2015 - Communications QoS, Reliability and Modeling, London, United Kingdom.
Resumo:
Phage display technology is a powerful platform for the generation of highly specific human monoclonal antibodies (Abs) with potential use in clinical applications. Moreover, this technique has also proven to be a reliable approach in identifying and validating new cancer-related targets. For scientific or medical applications, different types of Ab libraries can be constructed. The use of Fab Immune libraries allows the production of high quality and affinity antigen-specific Abs. In this work, two immune human phage display IgG Fab libraries were generated from the Ab repertoire of 16 breast cancer patients, in order to obtain a tool for the development of new therapeutic Abs for breast cancer, a condition that has great impact worldwide. The generated libraries are estimated to contain more than 108 independent clones and a diversity over 90%. Libraries validation was pursued by selection against BSA, a foreign and highly immunogenic protein, and HER2, a well established cancer target. Preliminary results suggested that phage pools with affinity for these antigens were selected and enriched. Individual clones were isolated, however, it was not possible to obtain enough data to further characterize them. Selection against the DLL1 protein was also performed, once it is a known ligand of the Notch pathway, whose deregulation is associated to breast cancer, making it an interesting target for the generation of function-blocking Abs. Selection resulted in the isolation of a clone with low affinity and Fab expression levels. The validation process was not completed and further effort will have to be put in this task in the future. Although immune libraries concept implies limited applicability, the library reported here has a wide range of use possibilities, since it was not restrained to a single antigen but instead thought to be used against any breast cancer associated target, thus being a valuable tool.
Resumo:
Dissertação de mestrado em Genética Molecular