919 resultados para Big Science projects
Resumo:
Illustrations, p. 30-52, numbered as leaves.
Resumo:
Other slight variations in title.
Resumo:
Cloud computing offers massive scalability and elasticity required by many scien-tific and commercial applications. Combining the computational and data handling capabilities of clouds with parallel processing also has the potential to tackle Big Data problems efficiently. Science gateway frameworks and workflow systems enable application developers to implement complex applications and make these available for end-users via simple graphical user interfaces. The integration of such frameworks with Big Data processing tools on the cloud opens new oppor-tunities for application developers. This paper investigates how workflow sys-tems and science gateways can be extended with Big Data processing capabilities. A generic approach based on infrastructure aware workflows is suggested and a proof of concept is implemented based on the WS-PGRADE/gUSE science gateway framework and its integration with the Hadoop parallel data processing solution based on the MapReduce paradigm in the cloud. The provided analysis demonstrates that the methods described to integrate Big Data processing with workflows and science gateways work well in different cloud infrastructures and application scenarios, and can be used to create massively parallel applications for scientific analysis of Big Data.
Resumo:
This session will provide you with opportunity to find out what is being achieved and explore the implications for your own practice.
Resumo:
The generation of heterogeneous big data sources with ever increasing volumes, velocities and veracities over the he last few years has inspired the data science and research community to address the challenge of extracting knowledge form big data. Such a wealth of generated data across the board can be intelligently exploited to advance our knowledge about our environment, public health, critical infrastructure and security. In recent years we have developed generic approaches to process such big data at multiple levels for advancing decision-support. It specifically concerns data processing with semantic harmonisation, low level fusion, analytics, knowledge modelling with high level fusion and reasoning. Such approaches will be introduced and presented in context of the TRIDEC project results on critical oil and gas industry drilling operations and also the ongoing large eVacuate project on critical crowd behaviour detection in confined spaces.
Resumo:
A pesar de la existencia de una multitud de investigaciones sobre el análisis de sentimiento, existen pocos trabajos que traten el tema de su implantación práctica y real y su integración con la inteligencia de negocio y big data de tal forma que dichos análisis de sentimiento estén incorporados en una arquitectura (que soporte todo el proceso desde la obtención de datos hasta su explotación con las herramientas de BI) aplicada a la gestión de la crisis. Se busca, por medio de este trabajo, investigar cómo se pueden unir los mundos de análisis (de sentimiento y crisis) y de la tecnología (todo lo relacionado con la inteligencia de negocios, minería de datos y Big Data), y crear una solución de Inteligencia de Negocios que comprenda la minería de datos y el análisis de sentimiento (basados en grandes volúmenes de datos), y que ayude a empresas y/o gobiernos con la gestión de crisis. El autor se ha puesto a estudiar formas de trabajar con grandes volúmenes de datos, lo que se conoce actualmente como Big Data Science, o la ciencia de los datos aplicada a grandes volúmenes de datos (Big Data), y unir esta tecnología con el análisis de sentimiento relacionado a una situación real (en este trabajo la situación elegida fue la del proceso de impechment de la presidenta de Brasil, Dilma Rousseff). En esta unión se han utilizado técnicas de inteligencia de negocios para la creación de cuadros de mandos, rutinas de ETC (Extracción, Transformación y Carga) de los datos así como también técnicas de minería de textos y análisis de sentimiento. El trabajo ha sido desarrollado en distintas partes y con distintas fuentes de datos (datasets) debido a las distintas pruebas de tecnología a lo largo del proyecto. Uno de los datasets más importantes del proyecto son los tweets recogidos entre los meses de diciembre de 2015 y enero de 2016. Los mensajes recogidos contenían la palabra "Dilma" en el mensaje. Todos los twittees fueron recogidos con la API de Streaming del Twitter. Es muy importante entender que lo que se publica en la red social Twitter no se puede manipular y representa la opinión de la persona o entidad que publica el mensaje. Por esto se puede decir que hacer el proceso de minería de datos con los datos del Twitter puede ser muy eficiente y verídico. En 3 de diciembre de 2015 se aceptó la petición de apertura del proceso del impechment del presidente de Brasil, Dilma Rousseff. La petición fue aceptada por el presidente de la Cámara de los Diputados, el diputado Sr. Eduardo Cunha (PMDBRJ), y de este modo se creó una expectativa sobre el sentimiento de la población y el futuro de Brasil. También se ha recogido datos de las búsquedas en Google referentes a la palabra Dilma; basado en estos datos, el objetivo es llegar a un análisis global de sentimiento (no solo basado en los twittees recogidos). Utilizando apenas dos fuentes (Twitter y búsquedas de Google) han sido extraídos muchísimos datos, pero hay muchas otras fuentes donde es posible obtener informaciones con respecto de las opiniones de las personas acerca de un tema en particular. Así, una herramienta que pueda recoger, extraer y almacenar tantos datos e ilustrar las informaciones de una manera eficaz que ayude y soporte una toma de decisión, contribuye para la gestión de crisis.
Resumo:
Even though today’s corporations recognize that they need to understand modern project management techniques (Schwalbe, 2002, p2), many researchers continue to provide evidence of poor IT project success. With Kotnour, (2000) finding that project performance is positively associated with project knowledge, a better understanding of how to effectively manage knowledge in IT projects should have considerable practical significance for increasing the chances of project success. Using a combined qualitative/quantitative method of data collection in multiple case studies spanning four continents, and comprising a variety of organizational types, the focus of this current research centered on the question of why individuals working within IT project teams might be motivated towards, or inhibited from, sharing their knowledge and experience in their activities, procedures, and processes. The research concluded with the development of a new theoretical model of knowledge sharing behavior, ‘The Alignment Model of Motivational Focus’. This model suggests that an individual’s propensity to share knowledge and experience is a function of perceived personal benefits and costs associated with the activity, balanced against the individual’s alignment to a group of ‘institutional’ factors. These factors are identified as alignments to the project team, to the organization, and dependent on the circumstances, to either the professional discipline or community of practice, to which the individual belongs.
Resumo:
Enterprise System (ES) implementation and management are knowledge intensive tasks that inevitably draw upon the experience of a wide range of people with diverse knowledge capabilities. Knowledge Management (KM) has been identified as a critical success factor in ES projects. Despite the recognized importance of managing knowledge for ES benefits realization, systematic attempts to conceptualize KM-structures have been few. Where the adequacy of KM-structures is assessed, the process and measures are typically idiosyncratic and lack credibility. Using the ‘KM-process’, itself based in sociology of knowledge, this paper conceptualizes four main constructs to measure the adequacy of KM-structures. The SEM model is tested using 310 responses gathered from 27 ES installations that had implemented SAP R/3. The findings reveal six constructs for KM-structure. Furthermore, the paper demonstrates the application of KM-structures in the context of ES using the Adaptive Structuration Theory. The results demonstrate that having adequate KM-structures in place, while necessary, is not sufficient. These rules and resources must be appropriated to have greater positive influence on the Enterprise System. Furthermore, the study provides empirical support for knowledge-based theory by illustrating the importance of knowledge use/re-use (vs. knowledge creation) as the most important driver in the process of KM.
Resumo:
As process management projects have increased in size due to globalised and company-wide initiatives, a corresponding growth in the size of process modeling projects can be observed. Despite advances in languages, tools and methodologies, several aspects of these projects have been largely ignored by the academic community. This paper makes a first contribution to a potential research agenda in this field by defining the characteristics of large-scale process modeling projects and proposing a framework of related issues. These issues are derived from a semi -structured interview and six focus groups conducted in Australia, Germany and the USA with enterprise and modeling software vendors and customers. The focus groups confirm the existence of unresolved problems in business process modeling projects. The outcomes provide a research agenda which directs researchers into further studies in global process management, process model decomposition and the overall governance of process modeling projects. It is expected that this research agenda will provide guidance to researchers and practitioners by focusing on areas of high theoretical and practical relevance.
Resumo:
The historical challenge of environmental impact assessment (EIA) has been to predict project-based impacts accurately. Both EIA legislation and the practice of EIA have evolved over the last three decades in Canada, and the development of the discipline and science of environmental assessment has improved how we apply environmental assessment to complex projects. The practice of environmental assessment integrates the social and natural sciences and relies on an eclectic knowledge base from a wide range of sources. EIA methods and tools provide a means to structure and integrate knowledge in order to evaluate and predict environmental impacts.----- This Chapter will provide a brief overview of how impacts are identified and predicted. How do we determine what aspect of the natural and social environment will be affected when a mine is excavated? How does the practitioner determine the range of potential impacts, assess whether they are significant, and predict the consequences? There are no standard answers to these questions, but there are established methods to provide a foundation for scoping and predicting the potential impacts of a project.----- Of course, the community and publics play an important role in this process, and this will be discussed in subsequent chapters. In the first part of this chapter, we will deal with impact identification, which involves appplying scoping to critical issues and determining impact significance, baseline ecosystem evaluation techniques, and how to communicate environmental impacts. In the second part of the chapter, we discuss the prediction of impacts in relation to the complexity of the environment, ecological risk assessment, and modelling.