264 resultados para Bereczki, Gábor: A cseremisz nyelv történeti alaktana
Resumo:
Very recently, heterozygous mutations in the genes encoding transforming growth factor beta receptors I (TGFBR1) and II (TGFBR2) have been reported in Loeys-Dietz aortic aneurysm syndrome (LDS). In addition, dominant TGFBR2 mutations have been identified in Marfan syndrome type 2 (MFS2) and familial thoracic aortic aneurysms and dissections (TAAD). In the past, mutations of these genes were associated with atherosclerosis and several human cancers. Here, we report a total of nine novel and one known heterozygous sequence variants in the TGFBR1 and TGFBR2 genes in nine of 70 unrelated individuals with MFS-like phenotypes who previously tested negative for mutations in the gene encoding the extracellular matrix protein fibrillin-1 (FBN1). To assess the pathogenic impact of these sequence variants, in silico analyses were performed by the PolyPhen, SIFT, and Fold-X algorithms and by means of a 3D homology model of the TGFBR2 kinase domain. Our results showed that in all but one of the patients the pathogenic effect of at least one sequence variant is highly probable (c.722C > T, c.799A > C, and c.1460G > A in TGFBR1 and c.773T > G, c.1106G > T, c.1159G > A, c.1181G > A, and c.1561T > C in TGFBR2). These deleterious alleles occurred de novo or segregated with the disease in the families, indicating a causative association between the sequence variants and clinical phenotypes. Since TGFBR2 mutations found in patients with MFS-related disorders cannot be distinguished from heterozygous TGFBR2 mutations reported in tumor samples, we emphasize the importance of segregation analysis in affected families. In order to be able to find the mutation that is indeed responsible for a MFS-related phenotype, we also propose that genetic testing for sequence alterations in TGFBR1 and TGFBR2 should be complemented by mutation screening of the FBN1 gene.
Resumo:
Mutations in the FBN1 gene are the major cause of Marfan syndrome (MFS), an autosomal dominant connective tissue disorder, which displays variable manifestations in the cardiovascular, ocular, and skeletal systems. Current molecular genetic testing of FBN1 may miss mutations in the promoter region or in other noncoding sequences as well as partial or complete gene deletions and duplications. In this study, we tested for copy number variations by successively applying multiplex ligation-dependent probe amplification (MLPA) and the Affymetrix Human Mapping 500 K Array Set, which contains probes for approximately 500,000 single-nucleotide polymorphisms (SNPs) across the genome. By analyzing genomic DNA of 101 unrelated individuals with MFS or related phenotypes in whom standard genetic testing detected no mutation, we identified FBN1 deletions in two patients with MFS. Our high-resolution approach narrowed down the deletion breakpoints. Subsequent sequencing of the junctional fragments revealed the deletion sizes of 26,887 and 302,580 bp, respectively. Surprisingly, both deletions affect the putative regulatory and promoter region of the FBN1 gene, strongly indicating that they abolish transcription of the deleted allele. This expectation of complete loss of function of one allele, i.e. true haploinsufficiency, was confirmed by transcript analyses. Our findings not only emphasize the importance of screening for large genomic rearrangements in comprehensive genetic testing of FBN1 but, importantly, also extend the molecular etiology of MFS by providing hitherto unreported evidence that true haploinsufficiency is sufficient to cause MFS.
Resumo:
Correspondence establishment is a key step in statistical shape model building. There are several automated methods for solving this problem in 3D, but they usually can only handle objects with simple topology, like that of a sphere or a disc. We propose an extension to correspondence establishment over a population based on the optimization of the minimal description length function, allowing considering objects with arbitrary topology. Instead of using a fixed structure of kernel placement on a sphere for the systematic manipulation of point landmark positions, we rely on an adaptive, hierarchical organization of surface patches. This hierarchy can be built on surfaces of arbitrary topology and the resulting patches are used as a basis for a consistent, multi-scale modification of the surfaces' parameterization, based on point distribution models. The feasibility of the approach is demonstrated on synthetic models with different topologies.
Resumo:
We improved, evaluated, and used Sanger sequencing for quantification of single nucleotide polymorphism (SNP) variants in transcripts and gDNA samples. This improved assay resulted in highly reproducible relative allele frequencies (e.g., for a heterozygous gDNA 50.0+/-1.4%, and for a missense mutation-bearing transcript 46.9+/-3.7%) with a lower detection limit of 3-9%. It provided excellent accuracy and linear correlation between expected and observed relative allele frequencies. This sequencing assay, which can also be used for the quantification of copy number variations (CNVs), methylations, mosaicisms, and DNA pools, enabled us to analyze transcripts of the FBN1 gene in fibroblasts and blood samples of patients with suspected Marfan syndrome not only qualitatively but also quantitatively. We report a total of 18 novel and 19 known FBN1 sequence variants leading to a premature termination codon (PTC), 26 of which we analyzed by quantitative sequencing both at gDNA and cDNA levels. The relative amounts of PTC-containing FBN1 transcripts in fresh and PAXgene-stabilized blood samples were significantly higher (33.0+/-3.9% to 80.0+/-7.2%) than those detected in affected fibroblasts with inhibition of nonsense-mediated mRNA decay (NMD) (11.0+/-2.1% to 25.0+/-1.8%), whereas in fibroblasts without NMD inhibition no mutant alleles could be detected. These results provide evidence for incomplete NMD in leukocytes and have particular importance for RNA-based analyses not only in FBN1 but also in other genes.
Resumo:
Simulation ist heute eine unentbehrliche Komponente bei der Planung und Analyse von modernen Materialflusssystemen. Ihr Nutzen hängt in hohem Maße davon ab, wie akkurat sie das physikalische System modellieren kann. In diesem Artikel wird ein Kamera-basiertes System vorgestellt, welches in bestimmten Einsatzfällen bei der Datensammlung behilflich sein kann. Vor- und Nachteile des Systems werden diskutiert und die Einsatzfälle abgegrenzt. Am Ende des Artikels wird das Kamera-basierte Datensammlungssystem an Beispielen verdeutlicht und es wird gezeigt, wie die Ergebnisse in Simulationsmodellen angewendet werden können.
Resumo:
Simulation techniques are almost indispensable in the analysis of complex systems. Materials- and related information flow processes in logistics often possess such complexity. Further problem arise as the processes change over time and pose a Big Data problem as well. To cope with these issues adaptive simulations are more and more frequently used. This paper presents a few relevant advanced simulation models and intro-duces a novel model structure, which unifies modelling of geometrical relations and time processes. This way the process structure and their geometric relations can be handled in a well understandable and transparent way. Capabilities and applicability of the model is also presented via a demonstrational example.
Resumo:
The self-assembly and redox-properties of two viologen derivatives, N-hexyl-N-(6-thiohexyl)-4,4-bipyridinium bromide (HS-6V6-H) and N,N-bis(6-thiohexyl)-4,4-bipyridinium bromide (HS-6V6-SH), immobilized on Au(111)-(1x1) macro-electrodes were investigated by cyclic voltammetry, surface enhanced infrared spectroscopy (SEIRAS) and in situ scanning tunneling microscopy (STM). Depending on the assembly conditions one could distinguish three different types of adlayers for both viologens: a low coverage disordered and an ordered striped phase of flat oriented molecules as well as a high coverage monolayer composed of tilted viologen moieties. Both molecules, HS-6V6-H and HS-6V6-SH, were successfully immobilized on Au(poly) nano-electrodes, which gave a well-defined redox-response in the lower pA–current range. An in situ STM configuration was employed to explore electron transport properties of single molecule junctions Au(T)|HS-6V6-SH(HS-6V6-H)|Au(S). The observed sigmoidal potential dependence, measured at variable substrate potential ES and at constant bias voltage (ET–ES), was attributed to electronic structure changes of the viologen moiety during the one-electron reduction/re-oxidation process V2+ V+. Tunneling experiments in asymmetric, STM-based junctions Au(T)-S-6V6-H|Au(S) revealed current (iT)–voltage (ET) curves with a maximum located at the equilibrium potential of the redox-process V2+ V+. The experimental iT–ET characteristics of the HS-6V6-H–modified tunneling junction were tentatively attributed to a sequential two-step electron transfer mechanism.
Resumo:
One Arabian and 5 Hungarian half-bred horses were used to study the macroscopic and microscopic survival of autologous osteochondral grafts in the weight-bearing surface of the medial femoral condyle (MFC). Grafts were harvested from the cranial surface of the medial femoral trochlea (MFT) under arthroscopic control. Three of them were transplanted into the weight-bearing surface of the contralateral MFC using an arthrotomy approach. Three months later this transplantation procedure was repeated on the opposite stifle joints in the same animals, but at that time transplantation was performed arthroscopically. Follow-up arthroscopy was carried out 12 months after the first operations, and biopsies were taken from both the recipient and the donor sites for histological examination. During follow-up arthroscopy, the transplanted areas looked congruent and smooth. Microscopically, the characteristics of hyaline cartilage were present in 5 out of the 10 biopsies examined; however, in the other half of biopsies glycosaminoglycan (GAG) loss and change in the architecture of the transplanted cartilage was observed. In a 16-year-old horse, all grafts broke during harvesting, and thus transplantation was not performed. No radiological signs of osteoarthritic changes were detected 9 to 12 months after the operations in the donor and recipient joints. Clinically, no lameness or effusion was present three months after the transplantations.
Resumo:
The forces required for the detachment of ferrocene (Fc) from β-cyclodextrin (βCD) in a single host (βCD)–guest (Fc) complex were investigated using force spectroscopy under electrochemical conditions. The redox state of the guest Fc moiety as well as the structure of the supporting matrix was found to decisively affect the nanomechanical properties of the complex.
Resumo:
67P/Churyumov-Gerasimenko (67P) is a Jupiter-family comet and the object of investigation of the European Space Agency mission Rosetta. This report presents the first full 3D simulation results of 67P’s neutral gas coma. In this study we include results from a direct simulation Monte Carlo method, a hydrodynamic code, and a purely geometric calculation which computes the total illuminated surface area on the nucleus. All models include the triangulated 3D shape model of 67P as well as realistic illumination and shadowing conditions. The basic concept is the assumption that these illumination conditions on the nucleus are the main driver for the gas activity of the comet. As a consequence, the total production rate of 67P varies as a function of solar insolation. The best agreement between the model and the data is achieved when gas fluxes on the night side are in the range of 7% to 10% of the maximum flux, accounting for contributions from the most volatile components. To validate the output of our numerical simulations we compare the results of all three models to in situ gas number density measurements from the ROSINA COPS instrument. We are able to reproduce the overall features of these local neutral number density measurements of ROSINA COPS for the time period between early August 2014 and January 1 2015 with all three models. Some details in the measurements are not reproduced and warrant further investigation and refinement of the models. However, the overall assumption that illumination conditions on the nucleus are at least an important driver of the gas activity is validated by the models. According to our simulation results we find the total production rate of 67P to be constant between August and November 2014 with a value of about 1 × 10²⁶ molecules s⁻¹.
Resumo:
OBJECTIVES: To compare the practicability, visualization of structures, and iatrogenic damage of direct and transthecal approaches to the navicular bursa for diagnostic needle endoscopy. STUDY DESIGN: Descriptive study. SAMPLE POPULATION: Equine cadaver forelimbs (n = 30). METHODS: Direct and transthecal approaches for insertion of a needle endoscope into the navicular bursa were performed. Video recordings of endoscopic procedures were assessed to determine all structures visualized within the navicular bursa. Number of attempts to gain access to the navicular bursa and total time for insertion and examination were recorded. Distribution and severity of iatrogenic lesions were assessed and scored after dissection. RESULTS: There were no statistical differences for number of attempts or time needed for insertion and examination between direct and transthecal approaches. The direct approach offered significantly increased visibility of the ipsilateral abaxial and proximal margins of the navicular bone, and ipsilateral collateral sesamoidean ligament. Iatrogenic lesions were superficial and focal, regardless of approach taken, or whether a blunt or sharp trocar tip was used. CONCLUSIONS: The direct approach provided significantly better visualization of the ipsilateral structures within the navicular bursa compared to the transthecal approach. Needle endoscopy offers a reliable technique to evaluate the navicular bursa and may complement or replace other diagnostic modalities in horses with lameness localized to the navicular region.