914 resultados para Benthic marine community
Resumo:
Maerl community respiration, photosynthesis and calcification were measured seasonally in the Bay of Brest (France). The dynamics of oxygen, carbon and carbonate fluxes at the water-sediment interface were assessed using benthic chambers. Community respiration (CR) fluctuated in accordance with the seasonal changes in water temperature, from 1.5 mmol C m**-2 h**-1 in winter to 8.7 mmol C m**-2 h**-1 in summer. Mean gross community production (GCP) varied significantly among seasons, according to incident irradiance and temperature, from 3.4 mmol C m**-2 h**-1 in winter to 12.7 mmol C m-2 h-1 in summer. Mean annual Pmax for the P-E curve was estimated to 13.3 mmol C m-2 h-1. Carbonate precipitation only occurred during light incubations and varied seasonally from 0.7 mmol CaCO3 m-2 h-1 in winter to 4.2 mmol CaCO3 m-2 h-1 in summer. Mean annual Pmax was 3.2 mmol CaCO3 m-2 h-1. Annual CR was estimated to 407.4 g C m**-2 yr**-1, and GCP, to 240.9 g C m**-2 yr**-1. Maerl communities are, therefore, heterotrophic systems (GCP:CR = 0.6), and are a source of CO2 for surrounding environments. In addition, CO2 released by calcification averaged 39.2 g C m**-2 yr**-1. Maerl community annual carbonate production was estimated to 486.7 g CaCO3 m**-2 yr**-1; they are therefore one of the most important carbonate producers in shallow coastal waters.
Resumo:
Ocean acidification (OA) is believed to be a major threat for near-future marine ecosystems, and that the most sensitive organisms will be calcifying organisms and the free-living larval stages produced by most benthic marine species. In this respect, echinoderms are one of the taxa most at risk. Earlier research on the impact of near-future OA on echinoderm larval stages showed negative effects, such as a decreased growth rate, increased mortality, and developmental abnormalities. However, all the long-term studies were performed on planktotrophic larvae while alternative life-history strategies, such as nonfeeding lecithotrophy, were largely ignored. Here, we show that lecithotrophic echinoderm larvae and juveniles are positively impacted by ocean acidification. When cultured at low pH, larvae and juveniles of the sea star Crossaster papposus grow faster with no visible affects on survival or skeletogenesis. This suggests that in future oceans, lecithotrophic species may be better adapted to deal with the threat of OA compared with planktotrophic ones with potentially important consequences at the ecosystem level. For example, an increase in populations of the top predator C. papposus will likely have huge consequences for community structure. Our results also highlight the importance of taking varying life-history strategies into account when assessing the impacts of climate change, an approach that also provides insight into understanding the evolution of life-history strategies.
Resumo:
Knowledge of how biota can be used to monitor ecosystem health and assess impacts by human alterations such as land use and management measures taken at different spatial scales is critical for improving the ecological quality of aquatic ecosystems. This knowledge in Uganda is very limited or unavailable yet it is needed to better understand the relationship between environmental factors at different spatial scales, assemblage structure and taxon richness of aquatic ecosystems. In this study, benthic invertebrate community patterns were sampled between June 2001 and April 2002 and analysed in relation to water quality and catchment land use patterns from three shallow near-shore bays characterized by three major land uses patterns: urban (Murchison Bay); semi-urban (Fielding Bay); rural (Hannington Bay). Variations in density and guild composition of benthic macro-invertebrates communities were evaluated using GIS techniques along an urban-rural gradient of land use and differences in community composition were related to dissolved oxygen and conductivity variation. Based on numerical abundance and tolerance values, Hilsenhoff's Biotic Index ofthe invertebrates was determined in order to evaluate the relative importance of water quality in the three bays. Murchison Bay supported a relatively taxa-poor invertebrate assemblage mainly comprising stenotopic and eurytopic populations of pollution-tolerant groups such as worms and Chironomus sp. with an overall depression in species diversity. On the contrary, the communities in Fielding and Hannington bays were quite similar and supported distinct and diverse assemblages including pollution-intolerant forms such as Ephemeroptera (mayflies), Odonata (dragonflies). The Hilsenhoff Biotic Index in Murchison Bay was 6.53. (indicating poor water quality) compared to 6.34 for Fielding Bay and 5.78 for Hannington Bay (both indicating fair water quality). The characterization of maximum taxa richness balanced among taxa groups with good representation of intolerant individuals in Hannington Bay relative to Fielding and Murchison bays concludes that the bay is the cleanest in terms of water quality. Contrary, the dominance of few taxa with many tolerant iqdividuals present in Murchison Bay indicates that the bay is degraded in terms of water quality. These result are ofimportance when planning conservation and management measures, implementing large-scale biomonitoring programs, and predicting how human alterations (e.g nutrient loading) affect water ecosystems. Therefore, analysis of water quality in relation to macro-invertebrate community composition patterns as bio-indicators can lead to further understanding of their responses to environmental manipulations and perturbations.
Resumo:
Minimising catches of non-target animals in a trawl fishery reduces the impact on a marine community and may help to sustain the fishery resource in the long term. Hence the desirability for trawls that minimise impacts on non-target species while maintaining catches of target species. This study resulted from a need to further develop easily handled, semi-pelagic style trawls for Australia's Northern Fish Trawl Fishery. In November 1993 we compared catches from three differently rigged versions of a demersal wing trawl: one fished in a standard demersal configuration with its footrope on the sea bed, and two fished semi-pelagically, with their footropes raised to either 0.4-0.5 or 0.8-0.9 m above the sea bed. At two sites in the northeast Gulf of Carpentaria, each trawl type was used on the same combination of sites, grids within sites and times of day. Catches of the main target species (Lutjanus malabaricus and Lutjanus erythropterus) by the three trawl types were not significantly different. However, the mean catches of both these species and of other commercially important snappers, were highest in the semi-pelagic trawl raised 0.4-0.5 m above the sea bed. This increase could be due to a larger trawl spread or to the whole rig fishing higher in the water column. Of the 107 species of fishes analysed, 61 were caught in greater abundance in the demersal trawl. Seven species were caught more effectively in the semi-pelagic trawl with the footrope 0.4-0.5 m above the substrate; none was caught most effectively with the footrope set at 0.8-0.9 m. Epibenthic byproduct species (squid and Thenus orientalis), fish bycatch, sponges and other epibenthic invertebrates were also caught in lower numbers in the semi-pelagic trawls. The semi-pelagic trawls convincingly caught less (in both numbers and biomass) of the unwanted species which are normally discarded. Semi-pelagic fish trawls of the types tested would be suitable for Australia's Northern Fish Trawl Fishery and probably other demersal trawl fisheries that would benefit from the conservation of non-target epibenthic communities.
Resumo:
Market squid (Loligo opalescens) plays a vital role in the California ecosystem and serves as a major link in the food chain as both a predator and prey species. For over a century, market squid has also been harvested off the California coast from Monterey to San Pedro. Expanding global markets, coupled with a decline in squid product from other parts of the world, in recent years has fueled rapid expansion of the virtually unregulated California fishery. Lack of regulatory management, in combination with dramatic increases in fishing effort and landings, has raised numerous concerns from the scientific, fishing, and regulatory communities. In an effort to address these concerns, the National Oceanic and Atmospheric Administration’s (NOAA) Channel Islands National Marine Sanctuary (CINMS) hosted a panel discussion at the October 1997 California Cooperative Oceanic and Fisheries Investigations (CalCOFI) Conference; it focused on ecosystem management implications for the burgeoning market squid fishery. Both panel and audience members addressed issues such as: the direct and indirect effects of commercial harvesting upon squid biomass; the effects of harvest and the role of squid in the broader marine community; the effects of environmental variation on squid population dynamics; the sustainability of the fishery from the point of view of both scientists and the fishers themselves; and the conservation management options for what is currently an open access and unregulated fishery. Herein are the key points of the ecosystem management panel discussion in the form of a preface, an executive summary, and transcript. (PDF contains 33 pages.)
Resumo:
Long-term time series of zooplankton data provide invaluable information about the fluctuations of species abundance and the stability of marine community structure. These data have demonstrated that environmental variability have a profound effect on zooplankton communities across the Atlantic basin (Beaugrand et al., 2002; Frank et al., 2005; Pershing et al., 2005). The value of these time series increases as they lengthen, but so does the likelihood of changes in sampling or processing methods. Sam-pling zooplankton with nylon nets is highly selective and biased because of mesh selectivity, net avoidance, and damage to fragile organisms. One sampling parameter that must be standardized and closely monitored is the speed of the net through the water column. Tow speed should be as fast as possible to minimize net avoid-ance by the organisms, but not so fast as to damage soft bodied zooplankters or extrude them through the mesh (Tranter et al., 1968; Anderson and Warren, 1991).
Resumo:
The California fishery for red sea urchins, Strongylocentrotus franciscanus, has undergone explosive growth in recent years and is approaching full exploitation. Thus, there is considerable interest in enhancing stocks to maintain a high rate of landings. Fishable stocks of red sea urchins in different areas appear to be limited at three stages in their life history: By the availability of larvae, by the survival of newly settled to mid-sized animals, and by the food available to support growth and reproduction of larger animals. Here I review other efforts, notably the extensive Japanese work, to enhance fishable stocks of benthic marine invertebrates, and consider the potential options for red sea urchins at different points of limitation. These include collecting or culturing seed for outplanting, physical habitat improvement measures, improving the food supply, and conservation measures to protect existing stocks until alternate methods are proven and in place. The options are compared in terms of biological feasibility, capital and labor requirements, and potential implications for change in the structure of the fishing industry.
Resumo:
Atualmente a maior ameaça à integridade de ecossistemas aquáticos reside nas ações antrópicas, que através de alterações na cobertura vegetal ripária, atingem todos os compartimentos dos sistemas lóticos, alterando a estrutura física, química e biológica do rio e os padrões de ligação entre ecossistemas terrestres e aquáticos. A importância dos macroinvertebrados fragmentadores ainda não é bem conhecida nos trópicos. Eles podem contribuir para a decomposição de folhas em córregos, que é um processo fundamental para o fluxo de energia em rios de pequeno porte. Os processos de decomposição e produção secundária de macroinvertebrados aquáticos nos ecossistemas lóticos são intimamente relacionados com o aporte da vegetação terrestre, e podem ser sensíveis às alterações na cobertura vegetal ripária. Os objetivos desse estudo foram avaliar: (a) quais mudanças o desmatamento pode causar nos parâmetros físicos e químicos de rios; (b) os efeitos do desmatamento sobre a estrutura da comunidade de macroinvertebrados bentônicos associados às folhas, (c) nos processos ecossistêmicos, como decomposição foliar e produção secundária, e (d) a associação entre produção secundária de fragmentadores e decomposição foliar. O estudo foi realizado em 27 locais distribuídos em quatro córregos (7-8 locais por rio) de segunda-terceira ordem e que apresentavam um gradiente de desmatamento. Para estimar a taxa de decomposição, cinco pacotes de folha foram imersos em cada um dos pontos. Um pacote de folha foi retirado de cada ponto após 2, 7, 15 e 28 dias de imersão. O quinto pacote de folha foi retirado no 37 dia de imersão para as estimativas de produção secundária, biodiversidade e a diversidade funcional de insetos aquáticos. As concentrações de amônio aumentaram e a riqueza de espécies de insetos aquáticos e de EPTs (Ephemeroptera, Plecoptera e Trichoptera) dos pacotes de folhas diminuíram com o aumento do desmatamento. As taxas de decomposição diminuíram com o aumento do desmatamento. Os dados sugerem que a perda de vegetação ripária pela conversão em agropecuária teve impacto em parâmetros químicos e bióticos, tanto na estrutura da comunidade de macroinvertebrados quanto no funcionamento do ecossistema. Concluímos que a restauração e preservação da mata ripária deve ser um foco central das estratégias de gestão de ecossistemas lóticos para assegurar que os processos ecossistêmicos e a estrutura das comunidades em bacias hidrográficas estejam agindo como provedores dos serviços ambientais esperados.
Resumo:
The ecological interaction of brown algae are important as these macroalgae are common and often keystone members in many benthic marine communities.This review highlights their chemical interactions,particularly with potential herbivores,but also with fouling oranganisms,with potential pathogens,with each other as gametes,and with their microenvironments when they are spores.Phlorotannins,which are phenolic compounds unique to brown algae,have been studied hesvily in many of these respects and sre highlightes here.This includes recent controversy about their roles as defences against herbivory,as well as new understanding of their roles in primary cellular functions that may,in many instances,be more important than ,and which at least have to be considered in convert with,any possible ecological functions.Brown algae have also been useful models for testing theoties about the evolution of and ecological constraints on chemical defence.Furthermore,their mocroscopic motile gametes and spores have the ability to react to their chemical environments behavirourally.
Resumo:
Shallow-water tropical reefs and the deep sea represent the two most diverse marine environments. Understanding the origin and diversification of this biodiversity is a major quest in ecology and evolution. The most prominent and well-supported explanation, articulated since the first explorations of the deep sea, holds that benthic marine fauna originated in shallow, onshore environments, and diversified into deeper waters. In contrast, evidence that groups of marine organisms originated in the deep sea is limited, and the possibility that deep-water taxa have contributed to the formation of shallow-water communities remains untested with phylogenetic methods. Here we show that stylasterid corals (Cnidaria: Hydrozoa: Stylasteridae)--the second most diverse group of hard corals--originated and diversified extensively in the deep sea, and subsequently invaded shallow waters. Our phylogenetic results show that deep-water stylasterid corals have invaded the shallow-water tropics three times, with one additional invasion of the shallow-water temperate zone. Our results also show that anti-predatory innovations arose in the deep sea, but were not involved in the shallow-water invasions. These findings are the first robust evidence that an important group of tropical shallow-water marine animals evolved from deep-water ancestors.