972 resultados para Benthic Microalgae
Resumo:
The benthic macrofauna of the New York Bight has been monitored extensively, primarily to determine trends over space and time in biological effects of waste inputs. In the present study, from 44 to 48 stations were sampled each summer from 1980-1985. Data from other Bight benthic studies are included to· extend the temporal coverage from 1979 to 1989. Numbers of species and amphipods per sample, taken as relatively sensitive indicators of environmental stress, showed consistent spatial patterns. Lowest values were found in the Christiaensen Basin and other inshore areas, and numbers increased toward the outermost shelf and Hudson Shelf Valley stations. There were statistically significant decreases in species and amphipods at most stations from 1980 to 1985. (Preliminary data from a more recent study suggest numbers of species increased again between 1986 and 1989.) Cluster analysis of 1980-85 data indicated several distinct assemblages-sewage sludge dumpsite, sludge accumulation area, inner Shelf Valley, outer Shelf Valley, outer shelf-with little change over time. The "enriched" and "highly altered" assemblages in the Basin appear similar to those reported since sampling began there in 1968. No consistently defaunated areas have been found in any sampling programs over the past 20 years. On a gross level, therefore, recent faunal responses to any environmental changes are not evident, but the more sensitive measures used, i.e. numbers of species and amphipods, do indicate widespread recent effects. Causes of the faunal changes are not obvious; some possibilities, including increasing effects of sewage sludge or other waste inputs, natural factors, and sampling artifacts, are discussed. (PDF file contains 54 pages.)
Resumo:
Information on long-term temporal variability of and trends in benthic community-structure variables, such as biomass, is needed to estimate the range of normal variability in comparison with the effects of environmental change or disturbance. Fishery resource distribution and population growth will be influenced by such variability. This study examines benthic macrofaunal biomass and related data collected annually between 1978 and 1985 at 27 sites on the continental shelf of the northwestern Atlantic, from North Carolina to the southern Gulf of Maine. The study was expanded at several sites with data from other studies collected at the same sites prior to 1978. Results indicate that although there was interannual and seasonal variability, as expected, biomass levels over the study period showed few clear trends. Sites exhibiting trends were either in pollution-stressed coastal areas or influenced by the population dynamics of one or a few species, especially echinoderms. (PDF file contains 34 pages.)
Resumo:
The purpose of this study was to measure and evaluate relationships between populations of benthic macroinvertebrates and fish, as well as variations in water quality in streams affected by acid Mine drainage. (PDF contains 21 pages)
Resumo:
Approximately 100,000 cubic yards of sand was transported to the ocean beach to renourish the eroded beach front during the period December 1985 through May 1986. The ocean beach at Sebastian Inlet SRA was previously studied in a project examining the benthic macrofauna and the fishes of the nearshore zone during 1981-1982 (Allenbaugh, 1984; Peters, 1984; Nelson, unpublished). In view of the existing data, the US Army Corps of Engineers provided funding to study the effects of the beach renourishment activities at Sebastian Inlet SRA on the benthic macrofauna and the fishes of the nearshore zone. This is the report on the results of this study.
Resumo:
In this paper, the background to the development of an analytical quality control procedure for the Trophic Diatom Index (TDI) is explained, highlighting some of the statistical and taxonomic problems encountered, and going on to demonstrate how the system works in practice. Most diatom-based pollution indices, including the TDI, use changes in the relative proportions of different taxa to indicate changing environmental conditions. The techniques involved are therefore much simpler than those involved in many studies of phytoplankton, for example, where absolute numbers are required.
Resumo:
The first bilateral study of methods of biological sampling and biological methods of water quality assessment took place during June 1977 on selected sampling sites in the catchment of the River Trent (UK). The study was arranged in accordance with the protocol established by the joint working group responsible for the Anglo-Soviet Environmental Agreement. The main purpose of the bilateral study in Nottingham was for some of the methods of sampling and biological assessment used by UK biologists to be demonstrated to their Soviet counterparts and for the Soviet biologists to have the opportunity to test these methods at first hand in order to judge the potential of any of these methods for use within the Soviet Union. This paper is concerned with the nine river stations in the Trent catchment.
Resumo:
Both chemical and biological methods are used to assess the water quality of rivers. Many standard physical and chemical methods are now established, but biological procedures of comparable accuracy and versatility are still lacking. This is unfortunate because the biological assessment of water quality has several advantages over physical and chemical analyses. Several groups of organisms have been used to assess water quality in rivers and these include Bacteria, Protozoa, Algae, macrophytes, macroinvertebrates and fish. Hellawell (1978) provides an excellent review of the advantages and disadvantages of these groups, and concludes that macroinvertebrates are the most useful for monitoring water quality. Although macroinvertebrates are relatively easy to sample in shallow water (depth < 1m), quantitative sampling poses more problems than qualitative sampling because a large number of replicate sampling units are usually required for accurate estimates of numbers or biomass per unit area. Both qualitative and quantitative sampling are difficult in deep water (depth > 1m). The present paper first considers different types of samplers with emphasis on immediate samplers, and then discusses some problems in choosing a suitable sampler for benthic macroinvertebrates in deep rivers.
Resumo:
This annotated bibliography covers literature to the end of November 1977, and includes references to samplers that could be used for the rapid removal of benthic invertebrates from natural substrata of rivers and streams. Marine samplers which have been, or could be, used in freshwater. Coverage of Russian literature is incomplete, although a selection of recent and important references are included. The references are arranged under the following headings, Reviews; Nets and quadrat samplers; Scoops, shovels and dredges; Grabs; Corers; Suction and air-lift samplers; Electroshocking samplers; Efficiencies and comparisons; and Samplers from catalogues. There is an index to samplers (by the common name) and an author index.
Resumo:
A supplement to the earlier bibliography compiled by Elliott and Tullett 1978 (FBA Occas. Publ. No. 4) covering literature from December 1977 - December 1982 on samplers that could be used for the rapid removal of benthic intertebrates from the natural substrata of rivers and streams. In addition it includes papers on marine samplers that have been or could be used in freshwater.
Resumo:
The recovery of benthic communities inside the western Gulf of Maine fishing closure area was evaluated by comparing invertebrate assemblages at sites inside and outside of the closure four to six years after the closure was established. The major restriction imposed by the closure was a year-round prohibition of bottom gillnets and otter trawls. A total of 163 seafloor sites (~half inside and half outside the closure) within a 515-km2 study area were sampled with some combination of Shipek grab, Wildco box corer, or underwater video. Bottom types ranged from mud (silt and clay) to boulders, and the effects of the closure on univariate measures (total density, biomass, taxonomic richness) of benthos varied widely among sediment types. For sites with predominantly mud sediments, there were mixed effects on inside and outside infauna and no effect on epifauna. For sites with mainly sand sediments, there were higher density, biomass, and taxonomic richness for infauna inside the closure, but no significant effects on epifauna. For sites dominated by gravel (which included boulders in some areas), there were no effects on infauna but strong effects on epifaunal density and taxonomic richness. For fishing gear, the data indicated that infauna recovered in sand from the impacts of otter trawls operated inside the closure but that they did not recover in mud, and that epifauna recovered on gravel bottoms from the impact of gillnets used inside the closure. The magnitudes of impact and recovery, however, cannot be inferred directly from our data because of a confounding factor of different fishing intensities outside the closure for a direct comparison of preclosure and postclosure data. The overall negative impact of trawls is likely underestimated by our data, whereas the negative impact of gillnets is likely overestimated.
Resumo:
Trawling and dredging on Georges Bank (northwest Atlantic Ocean) have altered the cover of colonial epifauna, as surveyed through in situ photography. A total of 454 photographs were analyzed from areas with gravel substrate between 1994 and 2000 at depths of 40–50 m and 80–90 m. The cover of hydroids, bushy bryozoans, sponges, and tubeworms was generally higher at sites undisturbed by fishing than at sites classified as disturbed. The magnitude and significance of this effect depended on depth and year. Encrusting bryozoans were the only type of colonial epifauna positively affected by bottom fishing. Species richness of noncolonial epifauna declined with increased bottom fishing, but Simpson’s index of diversity typically peaked at intermediate levels of habitat disturbance. Species that were more abundant at undisturbed sites possessed characteristics that made them vulnerable to bottom fishing. These characteristics include emergent growth forms, soft body parts, low motility, use of complex microhabitats, long life spans, slow growth, and larval dispersal over short distances. After the prohibition of bottom fishing at one site, both colonial and noncolonial species increased in abundance. Populations of most taxa took two years or more to increase after the fishing closure. This finding indicates that bottom fishing needs to be reduced to infrequent intervals to sustain the benthic species composition of Georges Bank at a high level of biodiversity and abundance.
Resumo:
Whole-gear efficiency (the proportion of fish passing between the otter doors of a bottom trawl that are subsequently captured) was estimated from data collected during experiments to measure the herding efficiency of bridles and doors, the capture efficiency of the net, and the length of the bridles sufficiently close to the seafloor to elicit a herding response. The experiments were focused on four species of flatfish: arrowtooth flounder (Atheresthes stomias), flathead sole (Hippoglossoides elassodon), rex sole (Glyptocephalus zachirus), and Dover sole (Microstomus pacificus). Whole-gear efficiency varied with fish length and reached maximum values between 40% and 50% for arrowtooth flounder, flathead sole, and rex sole. For Dover sole, however, whole-gear efficiency declined from a maximum of 33% over the length range sampled. Such efficiency estimates can be used to determine catchability, which, in turn, can be used to improve the accuracy of stock assessment models when the time series of a survey is short.
Resumo:
There is increasing interest in the potential impacts that fishing activities have on megafaunal benthic invertebrates occurring in continental shelf and slope ecosystems. We examined how the structure, size, and high-density aggregations of invertebrates provided structural relief for fishes in continental shelf and slope ecosystems off southern California. We made 112 dives in a submersible at 32−320 m water depth, surveying a variety of habitats from high-relief rock to flat sand and mud. Using quantitative video transect methods, we made 12,360 observations of 15 structure-form-ing invertebrate taxa and 521,898 individuals. We estimated size and incidence of epizoic animals on 9105 sponges, black corals, and gorgonians. Size variation among structure-form-ing invertebrates was significant and 90% of the individuals were <0.5 m high. Less than 1% of the observations of organisms actually sheltering in or located on invertebrates involved fishes. From the analysis of spatial associations between fishes and large invertebrates, six of 108 fish species were found more often adjacent to invertebrate colonies than the number of fish predicted by the fish-density data from transects. This finding indicates that there may be spatial associations that do not necessarily include physical contact with the sponges and corals. However, the median distances between these six fish species and the invertebrates were not particularly small (1.0−5.5 m). Thus, it is likely that these fishes and invertebrates are present together in the same habitats but that there is not necessarily a functional relationship between these groups of organisms. Regardless of their associations with fishes, these invertebrates provide structure and diversity for continental shelf ecosystems off southern California and certainly deserve the attention of scientists undertaking future conservation efforts.
Resumo:
The Northeast Fisheries Science Center of NOAA's National Marine Fisheries Service has a long history of research on benthic invertebrates and habitats in support of the management of living marine resources. These studies began in the 1870's under Spencer F. Baird's guidance as part of an effort to characterize the Nation's fisheries and living marine resources and their ecological interactions. This century and a quarter of research has included many benthic invertebrate studies, including community characterizations, shellfish biology and culture, pathology, ecosystem energy budget modeling, habitat evaluations, assessments of human impacts, toxic chemical bioaccumulation in demersal food webs, habitat or endangered species management, benthic autecology, systematics (to define new species and species population boundaries), and other benthic studies. Here we review the scope of past and current studies as a background for strategic research planning and suggest areas for further research to support NOAA's goals of sustainable fisheries management, healthy coastal ecosystems, and protected species populations.