970 resultados para Bean - Plant residues in soil - Productivity
Resumo:
Reforestation of agricultural land with mixed-species environmental plantings (native trees and shrubs) can contribute to mitigation of climate change through sequestration of carbon. Although soil carbon sequestration following reforestation has been investigated at site- and regional-scales, there are few studies across regions where the impact of a broad range of site conditions and management practices can be assessed. We collated new and existing data on soil organic carbon (SOC, 0–30 cm depth, N = 117 sites) and litter (N = 106 sites) under mixed-species plantings and an agricultural pair or baseline across southern and eastern Australia. Sites covered a range of previous land uses, initial SOC stocks, climatic conditions and management types. Differences in total SOC stocks following reforestation were significant at 52% of sites, with a mean rate of increase of 0.57 ± 0.06 Mg C ha−1 y−1. Increases were largely in the particulate fraction, which increased significantly at 46% of sites compared with increases at 27% of sites for the humus fraction. Although relative increase was highest in the particulate fraction, the humus fraction was the largest proportion of total SOC and so absolute differences in both fractions were similar. Accumulation rates of carbon in litter were 0.39 ± 0.02 Mg C ha−1 y−1, increasing the total (soil + litter) annual rate of carbon sequestration by 68%. Previously-cropped sites accumulated more SOC than previously-grazed sites. The explained variance differed widely among empirical models of differences in SOC stocks following reforestation according to SOC fraction and depth for previously-grazed (R2 = 0.18–0.51) and previously-cropped (R2 = 0.14–0.60) sites. For previously-grazed sites, differences in SOC following reforestation were negatively related to total SOC in the pasture. By comparison, for previously-cropped sites, differences in SOC were positively related to mean annual rainfall. This improved broad-scale understanding of the magnitude and predictors of changes in stocks of soil and litter C following reforestation is valuable for the development of policy on carbon markets and the establishment of future mixed-species environmental plantings.
Resumo:
Indospicine (L-2-amino-6-amidinohexanoic acid) is a natural hepatotoxin found in all parts of some Indigofera plants such as I. linnaei and I. spicata. Several studies have documented a susceptibility to this hepatotoxin in different species of animals, including cattle, sheep, dogs and rats, which are associated with mild to severe liver disease after prolonged ingestion. However, there is little published data on the effects of this hepatotoxin in camels, even though Indigofera plants are known to be palatable to camels in central Australia. The secondary poisoning of dogs after prolonged dietary exposure to residual indospicine in camel muscle has raised additional food safety concerns. In this study, a feeding experiment was conducted to investigate the in vivo accumulation, excretion, distribution and histopathological effects of dietary indospicine on camels. Six young camels (2 – 4 year old), weighing 270 − 390 kg were fed daily a roughage diet consisting of Rhodes grass hay and lucerne chaff, supplemented with Indigofera and steam flaked barley. Indigofera (I. spicata) was offered at 597 mg DM/kg body weight (bw)/day designed to deliver 337 µg indospicine/kg bw/day, and fed for a period of 32 days. Blood and muscle biopsies were collected over the period of the study. Concentrations of indospicine in the plasma and muscle biopsy samples were quantitated by validated ultra-performance liquid chromatography−tandem mass spectrometry (UPLC−MS/MS). The highest concentrations in plasma (1.01 mg/L) and muscle (2.63 mg/kg fresh weight (fw)) were found at necropsy (day 33). Other tissues were also collected at necropsy and analysis showed ubiquitous distribution of indospicine, with the highest indospicine accumulation detected in the pancreas (4.86 ± 0.56 mg/kg fw) and liver (3.60 ± 1.34 mg/kg fw); followed by the muscle, heart and kidney. Histopathological examination of liver tissue showed multiple small foci of predominantly mononuclear inflammatory cells. After cessation of Indigofera intake, indospicine present in plasma in the remaining 3 camels had a longer terminal elimination half-life (18.6 days) than muscle (15.9 days), and both demonstrated mono-exponential decreases.
Resumo:
Common bean production in Goiás, Brazil is concentrated in the same geographic area, but spread acrossthree distinct growing seasons, namely, wet, dry and winter. In the wet and dry seasons, common beansare grown under rainfed conditions, whereas the winter sowing is fully irrigated. The conventional breed-ing program performs all varietal selection stages solely in the winter season, with rainfed environmentsbeing incorporated in the breeding scheme only through the multi environment trials (METs) wherebasically only yield is recorded. As yield is the result of many interacting processes, it is challengingto determine the events (abiotic or biotic) associated with yield reduction in the rainfed environments(wet and dry seasons). To improve our understanding of rainfed dry bean production so as to produceinformation that can assist breeders in their efforts to develop stress-tolerant, high-yielding germplasm,we characterized environments by integrating weather, soil, crop and management factors using cropsimulation models. Crop simulations based on two commonly grown cultivars (Pérola and BRS Radi-ante) and statistical analyses of simulated yield suggest that both rainfed seasons, wet and dry, can bedivided in two groups of environments: highly favorable environment and favorable environment. Forthe wet and dry seasons, the highly favorable environment represents 44% and 58% of production area,respectively. Across all rainfed environment groups, terminal and/or reproductive drought stress occursin roughly one fourth of the seasons (23.9% for Pérola and 24.7% for Radiante), with drought being mostlimiting in the favorable environment group in the dry TPE. Based on our results, we argue that eventhough drought-tailoring might not be warranted, the common bean breeding program should adapttheir selection practices to the range of stresses occurring in the rainfed TPEs to select genotypes moresuitable for these environments.
Resumo:
O presente estudo quantificou os efeitos da fertilização mineral e da cobertura do solo com uma leguminosa (Pueraria phaseoloides (Roxb) Benth.) sobre a dinâmica de nutrientes no sistema solo-planta.
Resumo:
Relationship between occurrence of Panama disease in banana trees of cv. Nanicao and nutrients in soil and leaves The objective of the present work was to verify if the incited symptoms in banana trees cv. Nanicao, belonging to the subgroup Cavendish, in Vale do Ribeira, are related to levels of nutrients in soil and leaves. Sixteen areas in Vale do Ribeira were selected, one half with symptomatic plants and the other with healthy plants. In those areas the third leaf of five plants and the soil near those plants were collected, at depths from 0 to 20 cm and from 20 to 40 cm. At both depths of the sampled soil, levels of Ca, Mg, PO(4)(-3), S and cationic exchange capacity (CEC) were significantly different among the areas, and the low values of these elements were present in the areas containing symptomatic plants. At both depths, Mg, Al and H in relation to CEC were significantly different among the areas, and the low values of Mg and high of Al and H were present in the areas with symptomatic plants. The N, K and S in the leaves were significantly different among the areas. These elements showed low values in the areas containing symptomatic plants. Despite the fact that some amounts of macronutrients of the soil and of the leaves are present only in the areas containing plants of Nanicao with symptoms similar to fusariosis, proof of a possible occurrence of race of the pathogen should be looked for in Vale do Ribeira.
Resumo:
Nitrogen relations of natural and disturbed tropical plant communities in northern Australia (Kakadu National Park) were studied. Plant and soil N characteristics suggested that differences in N source utilisation occur at community and species level. Leaf and xylem sap N concentrations of plants in different communities were correlated with the availability of inorganic soil N (NH4+ and NO3-). In general, rates of leaf NO3- assimilation were low. Even in communities with a higher N status, including deciduous monsoon forest, disturbed wetland, and a revegetated mine waste rock dump, levels of leaf nitrate reductase, xylem and leaf NO3 levels were considerably lower than those that have been reported for eutrophic communities. Although NO3- assimilation in escarpment and eucalypt woodlands, and wetland, was generally low, within these communities there was a suite of species that exhibited a greater capacity for NO3- assimilation. These high-NO3- species were mainly annuals, resprouting herbs or deciduous trees that had leaves with high N contents. Ficus, a high-NO3- species, was associated with soil exhibiting higher rates of net mineralisation and net nitrification. Low-NO3- species were evergreen perennials with low leaf N concentrations. A third group of plants, which assimilated NO3- (albeit at lower rates than the high-NO3- species), and had high-N leaves, were leguminous species. Acacia species, common in woodlands, had the highest leaf N contents of all woody species. Acacia species appeared to have the greatest potential to utilise the entire spectrum of available N sources. This versatility in N source utilisation may be important in relation to their high tissue N status and comparatively short life cycle. Differences in N utilisation are discussed in the context of species life strategies and mycorrhizal associations.
Resumo:
Plants require roots to supply water, nutrients and oxygen for growth. The spatial distribution of roots in relation to the macropore structure of the soil in which they are growing influences how effective they are at accessing these resources. A method for quantifying root-macropore associations from horizontal soil sections is illustrated using two black vertisols from the Darling Downs, Queensland, Australia. Two-dimensional digital images were obtained of the macropore structure and root distribution for an area 55 x 55 mm at a resolution of 64 mu m. The spatial distribution of roots was quantified over a range of distances using the K-function. In all specimens, roots were shown to be clustered at short distances (1-10 mm) becoming more random at longer distances. Root location in relation to macropores was estimated using the function describing the distance of each root to the nearest macropore. From this function, a summary variable, termed the macropore sheath, was defined. The macropore sheath is the distance from macropores within which 80% of roots are located. Measured root locations were compared to random simulations of root distribution to establish if there was a preferential association between roots and macropores. More roots were found in and around macropores than expected at random.
Resumo:
Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed.
Resumo:
A field study was carried out to investigate the impacts of windrowed harvesting residues on denitrification, immobilisation and leaching of N-15-labelled nitrate applied at 20 kg N ha(-1) to microplots in second-rotation hoop pine (Araucaria cunninghamii) plantations of 1-3 years old in southeast Queensland, Australia. The PVC microplots were 235 mm in diameter and 150 mm. long, and driven into the 100 mm soil. There were three replications of such microplots for each of the six treatments which were areas just under and between 1-, 2- and 3-year-old windrows of harvesting residues. Based on gaseous N losses estimated by the difference between the recoveries of bromide (Br) applied at 100 kg Br ha(-1) and N-15-labelled nitrate, denitrification was highest (23% based on N-15 loss) in the areas just under the 1-year-old windrows 25 days after a simulated 75 mm rainfall and following several natural rainfall events. There was no significant difference in N-15 losses (14-17%) among the other treatments. The N-15 immobilisation rate was highest for microplots in the areas between the 1-year-old windrows and generally higher for microplots in the areas just under the windrows (30-39%) than that (26-30%) between the windrows. Direct measurement of N-15 gas emissions (N-15(2) + (N2O)-N-15) confirmed that the highest denitrification rate occurred in the microplots under the 1-year-old windrows although the gaseous N-15 loss calculated by gas emission was only about one-quarter that estimated by the N-15 mass balance method. A significant, positive linear relationship (P < 0.05) existed between the gaseous N-15 losses measured by the two methods used. The research indicates that considerable mineral N could be lost via denitrification during the critical inter-rotation period and early phase of the second rotation. However, the impacts of windrowed harvesting residues on N losses via denitrification might only last for a period of about 2 years. Published by Elsevier Science B.V.
Resumo:
The objective of the present work was to evaluate 27 progenies of cocoa crosses considering the agronomic traits and select F1 plants within superior crosses. The experiment was installed in March 2005, in the Experimental Station Joaquim Bahiana (ESJOB), in Itajuipe, Bahia. The area of the experiment is of approximately 3 ha, with a total of 3240 plants. Thirteen evaluations of vegetative brooms, five of cushion brooms and 15 of number of pods per plant were accomplished. Thirty pollinations were made for each selected plant to test for self-compatibility. The production, based on the number of pods per plant, and resistance to witches´ broom indicated CEPEC 94 x CCN 10, RB 39 x CCN 51 and CCN 10 x VB 1151 as superior progenies. All selections tested were self-compatible. The analyses of progenies and individual tree data, associated to visual field observations, allowed the selection of 17 plants which were included in a network of regional tests to determine the phenotypic stability.
Resumo:
This study analysed 22 strawberry and soil samples after their collection over the course of 2 years to compare the residue profiles from organic farming with integrated pest management practices in Portugal. For sample preparation, we used the citrate-buffered version of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. We applied three different methods for analysis: (1) 27 pesticides were targeted using LC-MS/MS; (2) 143 were targeted using low pressure GC-tandem mass spectrometry (LP-GC-MS/MS); and (3) more than 600 pesticides were screened in a targeted and untargeted approach using comprehensive, two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF-MS). Comparison was made of the analyses using the different methods for the shared samples. The results were similar, thereby providing satisfactory confirmation of both similarly positive and negative findings. No pesticides were found in the organic-farmed samples. In samples from integrated pest management practices, nine pesticides were determined and confirmed to be present, ranging from 2 μg kg−1 for fluazifop-pbutyl to 50 μg kg−1 for fenpropathrin. Concentrations of residues in strawberries were less than European maximum residue limits.
Resumo:
XXXVI IAHS World Congress on Housing - National Housing Programs-New Visions, November 03–07, 2008, Kolkata, India
Resumo:
The root-colonizing bacterium Pseudomonas fluorescens CHA0 was used to construct an oxygen-responsive biosensor. An anaerobically inducible promoter of Pseudomonas aeruginosa, which depends on the FNR (fumarate and nitrate reductase regulation)-like transcriptional regulator ANR (anaerobic regulation of arginine deiminase and nitrate reductase pathways), was fused to the structural lacZ gene of Escherichia coli. By inserting the reporter fusion into the chromosomal attTn7 site of P. fluorescens CHA0 by using a mini-Tn7 transposon, the reporter strain, CHA900, was obtained. Grown in glutamate-yeast extract medium in an oxystat at defined oxygen levels, the biosensor CHA900 responded to a decrease in oxygen concentration from 210 x 10(2) Pa to 2 x 10(2) Pa of O(2) by a nearly 100-fold increase in beta-galactosidase activity. Half-maximal induction of the reporter occurred at about 5 x 10(2) Pa. This dose response closely resembles that found for E. coli promoters which are activated by the FNR protein. In a carbon-free buffer or in bulk soil, the biosensor CHA900 still responded to a decrease in oxygen concentration, although here induction was about 10 times lower and the low oxygen response was gradually lost within 3 days. Introduced into a barley-soil microcosm, the biosensor could report decreasing oxygen concentrations in the rhizosphere for a 6-day period. When the water content in the microcosm was raised from 60% to 85% of field capacity, expression of the reporter gene was elevated about twofold above a basal level after 2 days of incubation, suggesting that a water content of 85% caused mild anoxia. Increased compaction of the soil was shown to have a faster and more dramatic effect on the expression of the oxygen reporter than soil water content alone, indicating that factors other than the water-filled pore space influenced the oxygen status of the soil. These experiments illustrate the utility of the biosensor for detecting low oxygen concentrations in the rhizosphere and other soil habitats.
Resumo:
Fatty acids distribution and stable isotope ratios (bulk delta(13)C. delta(15)N and delta(13)C of individual fatty acids) of organic residues from 30 potsherds have been used to get further insights into the diet at the Late Neolithic (3384-3370 BC) site of Arbon Bleiche 3. Switzerland. The results are compared with modern equivalents of animal and vegetable fats, which may have been consumed ill a mixed ecology community having agrarian, breeding, shepherd, gathering, hunting, and fishing activities. The used combined chemical and isotopic approach provides valuable information to complement archaeological indirect evidence about the dietary trends obtained from the analysis of faunal and plant remains. The small variations of the delta(13)C and delta(15)N values within the range expected for degraded animal and plant tissues, is consistent with the archaeological evidence of animals, whose subsistence was mainly based on C(3) plants. The overall fatty acid composition and the stable carbon isotopic compositions of palmitic, stearic and oleic acids of the organic residues indicate that the studied Arbon Bleiche 3 sherds contain fat residues of plant and animal origin, most likely ruminant (bovine and ovine). In several vessels the presence of milk residues provides direct evidence for dairying during the late Neolithic in central Europe. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
There are great concerns about degradation of agricultural soils. It has been suggested that cultivating different plant species intercropped with coffee plants can increase microbial diversity and enhance soil sustainability. The objective of this study was to evaluate enzyme activity (urease, arylsulfatase and phosphatase) and alterations in C and N mineralization rates as related to different legume cover crops planted between rows of coffee plants. Soil samples were collected in a field experiment conducted for 10 years in a sandy soil in the North of Paraná State, Brazil. Samples were collected from the 0-10 cm layer, both from under the tree canopy and in-between rows in the following treatments: control, Leucaena leucocephala, Crotalaria spectabilis, Crotalaria breviflora, Mucuna pruriens, Mucuna deeringiana, Arachis hypogaea and Vigna unguiculata. The soil was sampled in four stages of legume cover crops: pre-planting (September), after planting (November), flowering stage (February) and after plant residue incorporation (April), from 1997 to 1999. The green manure species influenced soil enzyme activity (urease, arylsulfatase and phosphatase) and C and N mineralization rates, both under the tree canopy and in-between rows. Cultivation of Leucaena leucocephala increased acid phosphatase and arilsulfatase activity and C and N mineralization both under the tree canopy and in-between rows. Intercropped L. leucocephala increased urease activity under the tree canopy while C. breviflora increased urease activity in-between rows.