983 resultados para Bayesian Networks
Resumo:
Several gene regulatory network models containing concepts of directionality at the edges have been proposed. However, only a few reports have an interpretable definition of directionality. Here, differently from the standard causality concept defined by Pearl, we introduce the concept of contagion in order to infer directionality at the edges, i.e., asymmetries in gene expression dependences of regulatory networks. Moreover, we present a bootstrap algorithm in order to test the contagion concept. This technique was applied in simulated data and, also, in an actual large sample of biological data. Literature review has confirmed some genes identified by contagion as actually belonging to the TP53 pathway.
Resumo:
A crucial aspect of evidential reasoning in crime investigation involves comparing the support that evidence provides for alternative hypotheses. Recent work in forensic statistics has shown how Bayesian Networks (BNs) can be employed for this purpose. However, the specification of BNs requires conditional probability tables describing the uncertain processes under evaluation. When these processes are poorly understood, it is necessary to rely on subjective probabilities provided by experts. Accurate probabilities of this type are normally hard to acquire from experts. Recent work in qualitative reasoning has developed methods to perform probabilistic reasoning using coarser representations. However, the latter types of approaches are too imprecise to compare the likelihood of alternative hypotheses. This paper examines this shortcoming of the qualitative approaches when applied to the aforementioned problem, and identifies and integrates techniques to refine them.
Resumo:
The exponential-logarithmic is a new lifetime distribution with decreasing failure rate and interesting applications in the biological and engineering sciences. Thus, a Bayesian analysis of the parameters would be desirable. Bayesian estimation requires the selection of prior distributions for all parameters of the model. In this case, researchers usually seek to choose a prior that has little information on the parameters, allowing the data to be very informative relative to the prior information. Assuming some noninformative prior distributions, we present a Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. Jeffreys prior is derived for the parameters of exponential-logarithmic distribution and compared with other common priors such as beta, gamma, and uniform distributions. In this article, we show through a simulation study that the maximum likelihood estimate may not exist except under restrictive conditions. In addition, the posterior density is sometimes bimodal when an improper prior density is used. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Fraud is a global problem that has required more attention due to an accentuated expansion of modern technology and communication. When statistical techniques are used to detect fraud, whether a fraud detection model is accurate enough in order to provide correct classification of the case as a fraudulent or legitimate is a critical factor. In this context, the concept of bootstrap aggregating (bagging) arises. The basic idea is to generate multiple classifiers by obtaining the predicted values from the adjusted models to several replicated datasets and then combining them into a single predictive classification in order to improve the classification accuracy. In this paper, for the first time, we aim to present a pioneer study of the performance of the discrete and continuous k-dependence probabilistic networks within the context of bagging predictors classification. Via a large simulation study and various real datasets, we discovered that the probabilistic networks are a strong modeling option with high predictive capacity and with a high increment using the bagging procedure when compared to traditional techniques. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Semi-qualitative probabilistic networks (SQPNs) merge two important graphical model formalisms: Bayesian networks and qualitative probabilistic networks. They provade a very Complexity of inferences in polytree-shaped semi-qualitative probabilistic networks and qualitative probabilistic networks. They provide a very general modeling framework by allowing the combination of numeric and qualitative assessments over a discrete domain, and can be compactly encoded by exploiting the same factorization of joint probability distributions that are behind the bayesian networks. This paper explores the computational complexity of semi-qualitative probabilistic networks, and takes the polytree-shaped networks as its main target. We show that the inference problem is coNP-Complete for binary polytrees with multiple observed nodes. We also show that interferences can be performed in time linear in the number of nodes if there is a single observed node. Because our proof is construtive, we obtain an efficient linear time algorithm for SQPNs under such assumptions. To the best of our knowledge, this is the first exact polynominal-time algorithm for SQPn. Together these results provide a clear picture of the inferential complexity in polytree-shaped SQPNs.
Resumo:
Learning the structure of a graphical model from data is a common task in a wide range of practical applications. In this paper, we focus on Gaussian Bayesian networks, i.e., on continuous data and directed acyclic graphs with a joint probability density of all variables given by a Gaussian. We propose to work in an equivalence class search space, specifically using the k-greedy equivalence search algorithm. This, combined with regularization techniques to guide the structure search, can learn sparse networks close to the one that generated the data. We provide results on some synthetic networks and on modeling the gene network of the two biological pathways regulating the biosynthesis of isoprenoids for the Arabidopsis thaliana plant
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
Abstract Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists’ classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.
Resumo:
Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists’ classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.
Resumo:
En esta Tesis Doctoral se emplean y desarrollan Métodos Bayesianos para su aplicación en análisis geotécnicos habituales, con un énfasis particular en (i) la valoración y selección de modelos geotécnicos basados en correlaciones empíricas; en (ii) el desarrollo de predicciones acerca de los resultados esperados en modelos geotécnicos complejos. Se llevan a cabo diferentes aplicaciones a problemas geotécnicos, como es el caso de: (1) En el caso de rocas intactas, se presenta un método Bayesiano para la evaluación de modelos que permiten estimar el módulo de Young a partir de la resistencia a compresión simple (UCS). La metodología desarrollada suministra estimaciones de las incertidumbres de los parámetros y predicciones y es capaz de diferenciar entre las diferentes fuentes de error. Se desarrollan modelos "específicos de roca" para los tipos de roca más comunes y se muestra cómo se pueden "actualizar" esos modelos "iniciales" para incorporar, cuando se encuentra disponible, la nueva información específica del proyecto, reduciendo las incertidumbres del modelo y mejorando sus capacidades predictivas. (2) Para macizos rocosos, se presenta una metodología, fundamentada en un criterio de selección de modelos, que permite determinar el modelo más apropiado, entre un conjunto de candidatos, para estimar el módulo de deformación de un macizo rocoso a partir de un conjunto de datos observados. Una vez que se ha seleccionado el modelo más apropiado, se emplea un método Bayesiano para obtener distribuciones predictivas de los módulos de deformación de macizos rocosos y para actualizarlos con la nueva información específica del proyecto. Este método Bayesiano de actualización puede reducir significativamente la incertidumbre asociada a la predicción, y por lo tanto, afectar las estimaciones que se hagan de la probabilidad de fallo, lo cual es de un interés significativo para los diseños de mecánica de rocas basados en fiabilidad. (3) En las primeras etapas de los diseños de mecánica de rocas, la información acerca de los parámetros geomecánicos y geométricos, las tensiones in-situ o los parámetros de sostenimiento, es, a menudo, escasa o incompleta. Esto plantea dificultades para aplicar las correlaciones empíricas tradicionales que no pueden trabajar con información incompleta para realizar predicciones. Por lo tanto, se propone la utilización de una Red Bayesiana para trabajar con información incompleta y, en particular, se desarrolla un clasificador Naïve Bayes para predecir la probabilidad de ocurrencia de grandes deformaciones (squeezing) en un túnel a partir de cinco parámetros de entrada habitualmente disponibles, al menos parcialmente, en la etapa de diseño. This dissertation employs and develops Bayesian methods to be used in typical geotechnical analyses, with a particular emphasis on (i) the assessment and selection of geotechnical models based on empirical correlations; on (ii) the development of probabilistic predictions of outcomes expected for complex geotechnical models. Examples of application to geotechnical problems are developed, as follows: (1) For intact rocks, we present a Bayesian framework for model assessment to estimate the Young’s moduli based on their UCS. Our approach provides uncertainty estimates of parameters and predictions, and can differentiate among the sources of error. We develop ‘rock-specific’ models for common rock types, and illustrate that such ‘initial’ models can be ‘updated’ to incorporate new project-specific information as it becomes available, reducing model uncertainties and improving their predictive capabilities. (2) For rock masses, we present an approach, based on model selection criteria to select the most appropriate model, among a set of candidate models, to estimate the deformation modulus of a rock mass, given a set of observed data. Once the most appropriate model is selected, a Bayesian framework is employed to develop predictive distributions of the deformation moduli of rock masses, and to update them with new project-specific data. Such Bayesian updating approach can significantly reduce the associated predictive uncertainty, and therefore, affect our computed estimates of probability of failure, which is of significant interest to reliability-based rock engineering design. (3) In the preliminary design stage of rock engineering, the information about geomechanical and geometrical parameters, in situ stress or support parameters is often scarce or incomplete. This poses difficulties in applying traditional empirical correlations that cannot deal with incomplete data to make predictions. Therefore, we propose the use of Bayesian Networks to deal with incomplete data and, in particular, a Naïve Bayes classifier is developed to predict the probability of occurrence of tunnel squeezing based on five input parameters that are commonly available, at least partially, at design stages.
Resumo:
Neuronal morphology is hugely variable across brain regions and species, and their classification strategies are a matter of intense debate in neuroscience. GABAergic cortical interneurons have been a challenge because it is difficult to find a set of morphological properties which clearly define neuronal types. A group of 48 neuroscience experts around the world were asked to classify a set of 320 cortical GABAergic interneurons according to the main features of their three-dimensional morphological reconstructions. A methodology for building a model which captures the opinions of all the experts was proposed. First, one Bayesian network was learned for each expert, and we proposed an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts was induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts was built. A thorough analysis of the consensus model identified different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types was defined by performing inference in the Bayesian multinet. These findings were used to validate the model and to gain some insights into neuron morphology.
Resumo:
This thesis proposes a novel graphical model for inference called the Affinity Network,which displays the closeness between pairs of variables and is an alternative to Bayesian Networks and Dependency Networks. The Affinity Network shares some similarities with Bayesian Networks and Dependency Networks but avoids their heuristic and stochastic graph construction algorithms by using a message passing scheme. A comparison with the above two instances of graphical models is given for sparse discrete and continuous medical data and data taken from the UCI machine learning repository. The experimental study reveals that the Affinity Network graphs tend to be more accurate on the basis of an exhaustive search with the small datasets. Moreover, the graph construction algorithm is faster than the other two methods with huge datasets. The Affinity Network is also applied to data produced by a synchronised system. A detailed analysis and numerical investigation into this dynamical system is provided and it is shown that the Affinity Network can be used to characterise its emergent behaviour even in the presence of noise.
Resumo:
Bayesian decision theory is increasingly applied to support decision-making processes under environmental variability and uncertainty. Researchers from application areas like psychology and biomedicine have applied these techniques successfully. However, in the area of software engineering and speci?cally in the area of self-adaptive systems (SASs), little progress has been made in the application of Bayesian decision theory. We believe that techniques based on Bayesian Networks (BNs) are useful for systems that dynamically adapt themselves at runtime to a changing environment, which is usually uncertain. In this paper, we discuss the case for the use of BNs, speci?cally Dynamic Decision Networks (DDNs), to support the decision-making of self-adaptive systems. We present how such a probabilistic model can be used to support the decision making in SASs and justify its applicability. We have applied our DDN-based approach to the case of an adaptive remote data mirroring system. We discuss results, implications and potential bene?ts of the DDN to enhance the development and operation of self-adaptive systems, by providing mechanisms to cope with uncertainty and automatically make the best decision.
Resumo:
Membrane proteins, which constitute approximately 20% of most genomes, are poorly tractable targets for experimental structure determination, thus analysis by prediction and modelling makes an important contribution to their on-going study. Membrane proteins form two main classes: alpha helical and beta barrel trans-membrane proteins. By using a method based on Bayesian Networks, which provides a flexible and powerful framework for statistical inference, we addressed alpha-helical topology prediction. This method has accuracies of 77.4% for prokaryotic proteins and 61.4% for eukaryotic proteins. The method described here represents an important advance in the computational determination of membrane protein topology and offers a useful, and complementary, tool for the analysis of membrane proteins for a range of applications.
Resumo:
Membrane proteins, which constitute approximately 20% of most genomes, form two main classes: alpha helical and beta barrel transmembrane proteins. Using methods based on Bayesian Networks, a powerful approach for statistical inference, we have sought to address beta-barrel topology prediction. The beta-barrel topology predictor reports individual strand accuracies of 88.6%. The method outlined here represents a potentially important advance in the computational determination of membrane protein topology.