969 resultados para Bayesian Latent Class
Resumo:
Injection drug use is the third most frequent risk factor for new HIV infections in the United States. A dual mode of exposure: unsafe drug using practices and risky sexual behaviors underlies injection drug users' (IDUs) risk for HIV infection. This research study aims to characterize patterns of drug use and sexual behaviors and to examine the social contexts associated with risk behaviors among a sample of injection drug users. ^ This cross-sectional study includes 523 eligible injection drug users from Houston, Texas, recruited into the 2009 National HIV Behavioral Surveillance project. Three separate set of analyses were carried out. First, using latent class analysis (LCA) and maximum likelihood we identified classes of behavior describing levels of HIV risk, from nine drug and sexual behaviors. Second, eight separate multivariable regression models were built to examine the odds of reporting a given risk behavior. We constructed the most parsimonious multivariable model using a manual backward stepwise process. Third, we examined whether HIV serostatus knowledge (self-reported positive, negative, or unknown serostatus) is associated with drug use and sexual HIV risk behaviors. ^ Participants were mostly male, older, and non-Hispanic Black. Forty-two percent of our sample had behaviors putting them at high risk, 25% at moderate risk, and 33% at low risk for HIV infection. Individuals in the High-risk group had the highest probability of risky behaviors, categorized as almost always sharing needles (0.93), seldom using condoms (0.10), reporting recent exchange sex partners (0.90), and practicing anal sex (0.34). We observed that unsafe injecting practices were associated with high risk sexual behaviors. IDUs who shared needles had higher odds of having anal sex (OR=2.89, 95%CI: 1.69-4.92) and unprotected sex (OR=2.66, 95%CI: 1.38-5.10) at last sex. Additionally, homelessness was associated with needle sharing (OR=2.24, 95% CI: 1.34-3.76) and cocaine use was associated with multiple sex partners (OR=1.82, 95% CI: 1.07-3.11). Furthermore, twenty-one percent of the sample was unaware of their HIV serostatus. The three groups were not different from each other in terms of drug-use behaviors: always using a new sterile needle, or in sharing needles or drug preparation equipment. However, IDUs unaware of their HIV serostatus were 33% more likely to report having more than three sexual partners in the past 12 months; 45% more likely to report to have unprotected sex and 85% more likely to use drug and or alcohol during or before at last sex compared to HIV-positive IDUs. ^ This analysis underscores the merit of LCA approach to empirically categorize injection drug users into distinct classes and identify their risk pattern using multiple indicators and our results show considerable overlap of high risk sexual and drug use behaviors among the high-risk class members. The observed clustering pattern of drug and sexual risk behavior among this population confirms that injection drug users do not represent a homogeneous population in terms of HIV risk. These findings will help develop tailored prevention programs.^
Resumo:
Mixture modeling is commonly used to model categorical latent variables that represent subpopulations in which population membership is unknown but can be inferred from the data. In relatively recent years, the potential of finite mixture models has been applied in time-to-event data. However, the commonly used survival mixture model assumes that the effects of the covariates involved in failure times differ across latent classes, but the covariate distribution is homogeneous. The aim of this dissertation is to develop a method to examine time-to-event data in the presence of unobserved heterogeneity under a framework of mixture modeling. A joint model is developed to incorporate the latent survival trajectory along with the observed information for the joint analysis of a time-to-event variable, its discrete and continuous covariates, and a latent class variable. It is assumed that the effects of covariates on survival times and the distribution of covariates vary across different latent classes. The unobservable survival trajectories are identified through estimating the probability that a subject belongs to a particular class based on observed information. We applied this method to a Hodgkin lymphoma study with long-term follow-up and observed four distinct latent classes in terms of long-term survival and distributions of prognostic factors. Our results from simulation studies and from the Hodgkin lymphoma study demonstrated the superiority of our joint model compared with the conventional survival model. This flexible inference method provides more accurate estimation and accommodates unobservable heterogeneity among individuals while taking involved interactions between covariates into consideration.^
Resumo:
Using a sample of 339 university graduates from the University of Alicante (Spain) three years after completion of their studies, we studied the relationships between general intelligence (GI), personality traits, emotional intelligence (EI), academic performance, and occupational attainment and compared the results of conventional regression analysis with the results obtained from applying regression mixture models. The results reveal the influence of unobserved population heterogeneity (latent class) on the relationship between predictors and criteria and the improvement in the prediction obtained from applying regression mixture models compared to applying a conventional regression model.
Resumo:
Background: Adolescent depression prevention research has focused on mean intervention outcomes, but has not considered heterogeneity in symptom course. Here, we empirically identify subgroups with distinct trajectories of depressive symptom change among adolescents enrolled in two indicated depression preven- tion trials and examine how cognitive-behavioral (CB) interventions and baseline predictors relate to trajectory membership. Methods: Six hundred thirty-one participants were assigned to one of three conditions: CB group intervention, CB bibliotherapy, and brochure control. We used group-based trajectory modeling to identify trajectories of depressive symptoms from pretest to 2-year follow-up. We examined associations between class membership and conditions using chi- square tests and baseline predictors using multinomial regressions. Results: We identified four trajectories in the full sample. Qualitatively similar trajectories were found in each condition separately. Two trajectories of positive symptom course (low-declining, high-declining) had declining symptoms and were dis- tinguished by baseline symptom severity. Two trajectories of negative course (high-persistent, resurging), respectively, showed no decline in symptoms or de- cline followed by symptom reappearance. Participants in the brochure control condition were significantly more likely to populate the high-persistent trajectory relative to either CB condition and were significantly less likely to populate the low-declining trajectory relative to CB group. Several baseline factors predicted trajectory classes, but gender was the most informative prognostic factor, with males having increased odds of membership in a high-persistent trajectory rel- ative to other trajectories. Conclusions: Findings suggest that CB preventive interventions do not alter the nature of trajectories, but reduce the risk that adolescents follow a trajectory of chronically elevated symptoms.
Resumo:
Background: Adolescent depression prevention research has focused on mean intervention outcomes, but has not considered heterogeneity in symptom course. Here, we empirically identify subgroups with distinct trajectories of depressive symptom change among adolescents enrolled in two indicated depression preven- tion trials and examine how cognitive-behavioral (CB) interventions and baseline predictors relate to trajectory membership. Methods: Six hundred thirty-one participants were assigned to one of three conditions: CB group intervention, CB bibliotherapy, and brochure control. We used group-based trajectory modeling to identify trajectories of depressive symptoms from pretest to 2-year follow-up. We examined associations between class membership and conditions using chi- square tests and baseline predictors using multinomial regressions. Results: We identified four trajectories in the full sample. Qualitatively similar trajectories were found in each condition separately. Two trajectories of positive symptom course (low-declining, high-declining) had declining symptoms and were dis- tinguished by baseline symptom severity. Two trajectories of negative course (high-persistent, resurging), respectively, showed no decline in symptoms or de- cline followed by symptom reappearance. Participants in the brochure control condition were significantly more likely to populate the high-persistent trajectory relative to either CB condition and were significantly less likely to populate the low-declining trajectory relative to CB group. Several baseline factors predicted trajectory classes, but gender was the most informative prognostic factor, with males having increased odds of membership in a high-persistent trajectory rel- ative to other trajectories. Conclusions: Findings suggest that CB preventive interventions do not alter the nature of trajectories, but reduce the risk that adolescents follow a trajectory of chronically elevated symptoms.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Familial typical migraine is a common, complex disorder that shows strong familial aggregation. Using latent-class analysis (LCA), we identified subgroups of people with migraine/severe headache in a community sample of 12,245 Australian twins (60% female), drawn from two cohorts of individuals aged 23-90 years who completed an interview based on International Headache Society criteria. We report results from genomewide linkage analyses involving 756 twin families containing a total of 790 independent sib pairs ( 130 affected concordant, 324 discordant, and 336 unaffected concordant for LCA-derived migraine). Quantitative-trait linkage analysis produced evidence of significant linkage on chromosome 5q21 and suggestive linkage on chromosomes 8, 10, and 13. In addition, we replicated previously reported typical-migraine susceptibility loci on chromosomes 6p12.2-p21.1 and 1q21-q23, the latter being within 3 cM of the rare autosomal dominant familial hemiplegic migraine gene (ATP1A2), a finding which potentially implicates ATP1A2 in familial typical migraine for the first time. Linkage analyses of individual migraine symptoms for our six most interesting chromosomes provide tantalizing hints of the phenotypic and genetic complexity of migraine. Specifically, the chromosome 1 locus is most associated with phonophobia; the chromosome 5 peak is predominantly associated with pulsating headache; the chromosome 6 locus is associated with activity-prohibiting headache and photophobia; the chromosome 8 locus is associated with nausea/vomiting and moderate/severe headache; the chromosome 10 peak is most associated with phonophobia and photophobia; and the chromosome 13 peak is completely due to association with photophobia. These results will prove to be invaluable in the design and analysis of future linkage and linkage disequilibrium studies of migraine.
Resumo:
It is often debated whether migraine with aura (MA) and migraine without aura (MO) are etiologically distinct disorders. A previous study using latent class analysis (LCA) in Australian twins showed no evidence for separate subtypes of MO and MA. The aim of the present study was to replicate these results in a population of Dutch twins and their parents, siblings and partners (N = 10,144). Latent class analysis of International Headache Society (IHS)-based migraine symptoms resulted in the identification of 4 classes: a class of unaffected subjects (class 0), a mild form of nonmigrainous headache (class 1), a moderately severe type of migraine (class 2), typically without neurological symptoms or aura (8% reporting aura symptoms), and a severe type of migraine (class 3), typically with neurological symptoms, and aura symptoms in approximately half of the cases. Given the overlap of neurological symptoms and nonmutual exclusivity of aura symptoms, these results do not support the MO and MA subtypes as being etiologically distinct. The heritability in female twins of migraine based on LCA classification was estimated at .50 (95% confidence intervals [0CI} .27 -.59), similar to IHS-based migraine diagnosis (h(2) = .49, 95% Cl .19-.57). However, using a dichotomous classification (affected-unaffected) decreased heritability for the IHS-based classification (h(2) = .33, 95% Cl .00-.60), but not the LCA-based classification (h(2) = .51, 95% Cl. 23-.61). Importantly, use of the LCA-based classification increased the number of subjects classified as affected. The heritability of the screening question was similar to more detailed LCA and IHS classifications, suggesting that the screening procedure is an important determining factor in genetic studies of migraine.
Resumo:
While many offline retailers have developed informational websites that offer information on products and prices, the key question for such informational websites is whether they can increase revenues via web-to-store shopping. The current paper draws on the information search literature to specify and test hypotheses regarding the offline revenue impact of adding an informational website. Explicitly considering marketing efforts, a latent class model distinguishes consumer segments with different short-term revenue effects, while a Vector Autoregressive model on these segments reveals different long-term marketing response. We find that the offline revenue impact of the informational website critically depends on the product category and customer segment. The lower online search costs are especially beneficial for sensory products and for customers distant from the store. Moreover, offline revenues increase most for customers with high web visit frequency. We find that customers in some segments buy more and more expensive products, suggesting that online search and offline purchases are complements. In contrast, customers in a particular segment reduce their shopping trips, suggesting their online activities partially substitute for experiential shopping in the physical store. Hence, offline retailers should use specific online activities to target specific product categories and customer segments.
Resumo:
A cikkben paneladatok segítségével a magyar gabonatermesztő üzemek 2001 és 2009 közötti technikai hatékonyságát vizsgáljuk. A technikai hatékonyság szintjének becslésére egy hagyományos sztochasztikus határok modell (SFA) mellett a látens csoportok modelljét (LCM) használjuk, amely figyelembe veszi a technológiai különbségeket is. Eredményeink arra utalnak, hogy a technológiai heterogenitás fontos lehet egy olyan ágazatban is, mint a szántóföldi növénytermesztés, ahol viszonylag homogén technológiát alkalmaznak. A hagyományos, azonos technológiát feltételező és a látens osztályok modelljeinek összehasonlítása azt mutatja, hogy a gabonatermesztő üzemek technikai hatékonyságát a hagyományos modellek alábecsülhetik. _____ The article sets out to analyse the technical efficiency of Hungarian crop farms between 2001 and 2009, using panel data and employing both standard stochastic frontier analysis and the latent class model (LCM) to estimate technical efficiency. The findings suggest that technological heterogeneity plays an important role in the crop sector, though it is traditionally assumed to employ homogenous technology. A comparison of standard SFA models that assumes the technology is common to all farms and LCM estimates highlights the way the efficiency of crop farms can be underestimated using traditional SFA models.
Resumo:
The study aims to analyze the content and measures of accuracy of the nursing diagnosis Ineffective Self Health in patients undergoing hemodialysis. Study of nursing diagnosis validation carried out in two stages, namely: content analysis by judges and accuracy of clinical indicators. In the first stage, 22 judges evaluated the setting and location of the diagnosis, clinical indicators and etiological factors and their conceptual and empirical definitions. We used the binomial test to determine the proportion of the judges of the relevance of the components of the nursing diagnosis. In the second stage, we used the Latent Class Analysis for the diagnostic accuracy by evaluating 200 patients in a hemodialysis clinic in northeastern Brazil. Research approved by the Ethics Committee, under the Opinion No 387 837 and CAAE 18486413.0.0000.5537. The results show that the judges evaluated as pertinent clinical indicators 12 and 22 etiological factors. Proposed amendment of the nomenclature of five indicators and six factors and the implementation of a clinical indicator for etiology and three etiological factors for clinical indicators. In conceptual and empirical definitions, judges judged as not relevant the conceptual and empirical definitions of a clinical indicator, the conceptual definitions of two etiological factors and empirical definitions four etiological factors. Still, changes were suggested in the conceptual and empirical definitions of two clinical indicators, the conceptual definitions of 12 etiological factors and empirical definitions of 11 etiological factors. Clinical indicators analyzed in the first stage were validated clinically in patients undergoing hemodialysis. The most frequent clinical indicators were Changes in laboratory tests (100%) and daily life choices ineffective to achieve health goals (81%); and three etiological factors had a higher frequency, they are: unfavorable demographic factors (94.5%), beliefs (79%) and comorbidities (77.5%). From Latent class analysis, diagnosis prevalence was estimated at 66.28%. Clinical indicators that showed the best sensitivity measures for the nursing diagnosis Ineffective Self Health were: daily life choices ineffective to achieve health goals and Expression of difficulty with prescribed regimens. In turn, the clinical indicators of inappropriate medication use, no expression of desire to control the disease, irregular attendance to the dialysis sessions and infection were more specific as to that diagnosis. Non-adherence to treatment was the only indicator that showed confidence intervals with values for sensitivity and specificity, statistically above 0.5, being the one who has better diagnostic accuracy as the inference of the nursing diagnosis Ineffective Self Health in hemodialysis clientele. Thus, it is believed that the improvement of the components of diagnosis in question will contribute to the development of more reliable nursing interventions to the health status of the individual in hemodialysis, providing a more scientifically qualified care.
Resumo:
The study aims to analyze the content and measures of accuracy of the nursing diagnosis Ineffective Self Health in patients undergoing hemodialysis. Study of nursing diagnosis validation carried out in two stages, namely: content analysis by judges and accuracy of clinical indicators. In the first stage, 22 judges evaluated the setting and location of the diagnosis, clinical indicators and etiological factors and their conceptual and empirical definitions. We used the binomial test to determine the proportion of the judges of the relevance of the components of the nursing diagnosis. In the second stage, we used the Latent Class Analysis for the diagnostic accuracy by evaluating 200 patients in a hemodialysis clinic in northeastern Brazil. Research approved by the Ethics Committee, under the Opinion No 387 837 and CAAE 18486413.0.0000.5537. The results show that the judges evaluated as pertinent clinical indicators 12 and 22 etiological factors. Proposed amendment of the nomenclature of five indicators and six factors and the implementation of a clinical indicator for etiology and three etiological factors for clinical indicators. In conceptual and empirical definitions, judges judged as not relevant the conceptual and empirical definitions of a clinical indicator, the conceptual definitions of two etiological factors and empirical definitions four etiological factors. Still, changes were suggested in the conceptual and empirical definitions of two clinical indicators, the conceptual definitions of 12 etiological factors and empirical definitions of 11 etiological factors. Clinical indicators analyzed in the first stage were validated clinically in patients undergoing hemodialysis. The most frequent clinical indicators were Changes in laboratory tests (100%) and daily life choices ineffective to achieve health goals (81%); and three etiological factors had a higher frequency, they are: unfavorable demographic factors (94.5%), beliefs (79%) and comorbidities (77.5%). From Latent class analysis, diagnosis prevalence was estimated at 66.28%. Clinical indicators that showed the best sensitivity measures for the nursing diagnosis Ineffective Self Health were: daily life choices ineffective to achieve health goals and Expression of difficulty with prescribed regimens. In turn, the clinical indicators of inappropriate medication use, no expression of desire to control the disease, irregular attendance to the dialysis sessions and infection were more specific as to that diagnosis. Non-adherence to treatment was the only indicator that showed confidence intervals with values for sensitivity and specificity, statistically above 0.5, being the one who has better diagnostic accuracy as the inference of the nursing diagnosis Ineffective Self Health in hemodialysis clientele. Thus, it is believed that the improvement of the components of diagnosis in question will contribute to the development of more reliable nursing interventions to the health status of the individual in hemodialysis, providing a more scientifically qualified care.
Resumo:
This study examines the business model complexity of Irish credit unions using a latent class approach to measure structural performance over the period 2002 to 2013. The latent class approach allows the endogenous identification of a multi-class framework for business models based on credit union specific characteristics. The analysis finds a three class system to be appropriate with the multi-class model dependent on three financial viability characteristics. This finding is consistent with the deliberations of the Irish Commission on Credit Unions (2012) which identified complexity and diversity in the business models of Irish credit unions and recommended that such complexity and diversity could not be accommodated within a one size fits all regulatory framework. The analysis also highlights that two of the classes are subject to diseconomies of scale. This may suggest credit unions would benefit from a reduction in scale or perhaps that there is an imbalance in the present change process. Finally, relative performance differences are identified for each class in terms of technical efficiency. This suggests that there is an opportunity for credit unions to improve their performance by using within-class best practice or alternatively by switching to another class.
Resumo:
Au Sénégal, les maladies diarrhéiques constituent un fardeau important, qui pèse encore lourdement sur la santé des enfants. Ces maladies sont influencées par un large éventail de facteurs, appartenant à différents niveaux et sphères d'analyse. Cet article analyse ces facteurs de risque et leur rôle relatif dans les maladies diarrhéiques de l'enfant à Dakar. Ce faisant, elle illustre une nouvelle approche pour synthétiser le réseau de ces déterminants. Une analyse en classes latentes (LCA) est d’abord menée, puis les variables latentes ainsi construites sont utilisées comme variables explicatives dans une régression logistique sur trois niveaux. Les résultats confirment que les déterminants des diarrhées chez l'enfant appartiennent aux trois niveaux d'analyse et que les facteurs comportementaux et l'assainissement du quartier jouent un rôle prépondérant. Les résultats illustrent aussi l'utilité des LCA pour synthétiser plusieurs indicateurs, afin de créer une image causale intégrée, tout en utilisant des modèles statistiques parcimonieux.
Resumo:
Bayesian methods offer a flexible and convenient probabilistic learning framework to extract interpretable knowledge from complex and structured data. Such methods can characterize dependencies among multiple levels of hidden variables and share statistical strength across heterogeneous sources. In the first part of this dissertation, we develop two dependent variational inference methods for full posterior approximation in non-conjugate Bayesian models through hierarchical mixture- and copula-based variational proposals, respectively. The proposed methods move beyond the widely used factorized approximation to the posterior and provide generic applicability to a broad class of probabilistic models with minimal model-specific derivations. In the second part of this dissertation, we design probabilistic graphical models to accommodate multimodal data, describe dynamical behaviors and account for task heterogeneity. In particular, the sparse latent factor model is able to reveal common low-dimensional structures from high-dimensional data. We demonstrate the effectiveness of the proposed statistical learning methods on both synthetic and real-world data.