997 resultados para Basic oxygen furnace slag


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein oxidation mechanisms result in a wide array of modifications, from backbone cleavage or protein crosslinking to more subtle modifications such as side chain oxidations. Protein oxidation occurs as part of normal regulatory processes, as a defence mechanism against oxidative stress, or as a deleterious processes when antioxidant defences are overcome. Because blood is continually exposed to reactive oxygen and nitrogen species, blood proteomics should inherently adopt redox proteomic strategies. In this review, we recall the biochemical basis of protein oxidation, review the proteomic methodologies applied to analyse redox modifications, and highlight some physiological and in vitro responses to oxidative stress of various blood components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'arthrose est une maladie dégénérative des articulations due à une dégradation progressive du cartilage. La calcification de l'articulation (essentiellement due à des dépôts de cristaux de phosphate de calcium basique -cristaux BCP-) est une caractéristique de cette maladie. Cependant, le rôle des cristaux BCP reste à déterminer. Nous avons tout d'abord déterminé en utilisant des cultures primaires de chondrocytes que les cristaux de BCP induisaient la production de la cytokine IL-6, via une signalisation intracellulaire implicant les kinase Syk, PI3 et Jak et Stat3. Les cristaux de BCP induisent également la perte de protéoglycanes et l'expression de IL-6 dans des explants de cartlage humain et ces deux effets peuvent être bloqués par un inhibiteur de IL-6, le Tocilizumab. Par ailleurs, nous avons trouvé que l'IL-6 ajouté à des chondrocytes, favorisait la formation de cristax de BCP et augmentait l'expression de gènes impliqués dans le processus de minéralisation : Ank (codant pour un transporteur de pyrophooshate), Annexin5 (codant pour un canal calcique) et Pit-1 (codant pour un transporteur de phoshate). In vivo, les cristaux de BCP injectés dans l'articulation de souris induisent une érosion du cartilage. Dans un modèle murin d'arthrose du genou induit par ménisectomie, nous avons observé la formation progressive de cristaux de BCP. Fait intéressant, la présence de ces cristaux dans l'articulation précédait la destruction du cartilage. Un agent susceptible de bloquer les calcifications tel que le sodium thiosulfate (STS), administré à des souris ménisectomisées, inhibait le dépôt intra-articulaire de ces cristaux ainsi que l'érosion du cartilage. Nous avons identifié ainsi un cercle vicieux dans l'arthrose, les cristaux induisant l'interleukine-6 et l'interleukine-6 induisant la formation de ces cristaux. Nous avons étudié si on pouvait bloquer cette boucle cristaux de BCP-IL6 soit par des agents décalcifiants, soit par des inhibiteurs d'IL-6. In vitro, des anticorps anti IL- 6 ou des inhibiteurs de signalisation, inhibaient significativement IL-6 et la minéralisation induite par IL-6. De même le STS inhibait la formation de ces cristaux et la production de l'IL-6. Tout récemment, nous avons trouvé que des inhibiteurs de la xanthine oxidoréductase étaient aussi capables d'inhiber à la fois la production d'IL-6 et la minéralization des chondrocytes. Finalement, nous avons pu exclure un rôle du système IL-1 dans le modèle d'arthrose induite par ménisectomie, les souris déficientes pour IL-1a/ß, MyD88 et l'inflammasome NLRP3 n'étant pas protégées dans ce modèle d'arthrose. L'ensemble de nos résultats montre que les cristaux BCP sont pathogéniques dans l'arthrose et qu'un inhibiteur de minéralisation tel que le STS ou un inhibiteur de l'interleukine-6 constitueraient des nouvelles thérapies pour l'arthrose. -- Osteoarthritis (OA), the most common degenerative disorder of the joints, results from an imbalance between the breakdown and repair of the cartilage and surrounding articular structures. Joint calcification (essentially due to basic calcium phosphate (BCP) crystal deposition) is a characteristic feature of OA. However, the role of BCP crystal deposition in the pathogenesis of OA remains unclear[1][1]. We first demonstrated that in primary murine chondrocytes exogenous BCP crystals led to IL-6 up-modulation and that BCP crystal signaling pathways involved Syk and PI3 kinases, and also gp130 associated molecules, Jak2 and Stat3. BCP crystals also induced proteoglycan loss and IL-6 expression in human cartilage expiants, (which were significantly reduced by an IL-6 inhibitor). In addition, we found that in chondrocytes exogenous IL-6 promoted calcium-containing crystal formation and up- regulation of genes codifying for proteins involved in the calcification process: the inorganic pyrophosphate transport channel Ank, the calcium channel Annexinö and the sodium/phosphate cotransporter Piti. In vivo, BCP crystals injected into murine knee joints induced cartilage erosion. In the menisectomy model, increasing deposits, identified as BCP crystals, were progressively observed around the joint before cartilage erosion. These deposits strongly correlated with cartilage degradation and IL-6 expression. These results demonstrated that BCP crystals deposition and IL-6 production are mutually reinforcing in the osteoarthritic pathogenic process. We then investigated if we could block the BCP-IL6 loop by either targeting IL-6 production or BCP crystal deposits. Treatment of chondrocytes with anti-IL-6 antibodies or inhibitors of IL-6- signaling pathway significantly inhibited IL-6-induced crystal formation. Similarly, sodium thiosulfate (STS), a well-known systemic calcification inhibitor, decreased crystal deposition as well as HA-induced IL-6 secretion in chondrocytes and, in vivo, it decreased crystal deposits size and cartilage erosion in menisectomized knees. Interestingly, we also found that xanthine-oxidoreductase (XO) inhibitors inhibited both IL-6 production and calcium crystal depositis in chondrocytes. We began to unravel the mechanisms involved in this coordinate modulation of IL-6 and mineralization. STS inhibited Reactive Oxygen Species (ROS) generation and we are currently investigating whether XO represents a major source of ROS in chondrocyte mineralization. Finally, we ruled out that IL-1 activation/signaling plays a role in the murine model of OA induced by menisectomy, as IL-1a/ß, the IL-1 R associated molecule MyD88 and NLRP3 inflammasome deficient mice were not protected in this model of OA. Moreover TLR-1, -2, -4,-6 deficient mice had a phenotype similar to that of wild-type mice. Altogether our results demonstrated a self-amplification loop between BCP crystals deposition and IL-6 production, which represents an aggravating process in OA pathogenesis. As currently prescribed OA drugs are addressing OA symptoms,our results highlight a potential novel treatment strategy whereby inhibitors of calcium- containing crystal formation and IL-6 could be combined to form the basis of a disease modifying treatment and alter the course of OA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT We report on the basic properties of zeolite NaY and potassium supported on NaY (K/NaY) assessed by pyrrole-TPD and MBOH transformation. Pyrrole-TPD revealed that impregnation of zeolite NaY with potassium promoted additional adsorption sites for pyrrole compared to parent zeolite. For zeolite with various potassium loadings, pyrrole adsorbed on K/NaY decreased with increased potassium loading. Reduction in pyrrole adsorption could be due to potassium hindering intrinsic basic sites (lattice oxygen), to oxide of potassium occluding in zeolite cavities restricting access for pyrrole, or to K2O reacting with pyrrole to form nondesorbed pyrrolate anions. On MBOH transformation, potassium almost completely suppressed NaY acid sites while K/NaY basicity increased with potassium loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a three-dimensional, semi-empirical, steady state model for simulating the combustion, gasification, and formation of emissions in circulating fluidized bed (CFB) processes. In a large-scale CFB furnace, the local feeding of fuel, air, and other input materials, as well as the limited mixing rate of different reactants produce inhomogeneous process conditions. To simulate the real conditions, the furnace should be modelled three-dimensionally or the three-dimensional effects should be taken into account. The only available methods for simulating the large CFB furnaces three-dimensionally are semi-empirical models, which apply a relatively coarse calculation mesh and a combination of fundamental conservation equations, theoretical models and empirical correlations. The number of such models is extremely small. The main objective of this work was to achieve a model which can be applied to calculating industrial scale CFB boilers and which can simulate all the essential sub-phenomena: fluid dynamics, reactions, the attrition of particles, and heat transfer. The core of the work was to develop the model frame and the required sub-models for determining the combustion and sorbent reactions. The objective was reached, and the developed model was successfully used for studying various industrial scale CFB boilers combusting different types of fuel. The model for sorbent reactions, which includes the main reactions for calcitic limestones, was applied for studying the new possible phenomena occurring in the oxygen-fired combustion. The presented combustion and sorbent models and principles can be utilized in other model approaches as well, including other empirical and semi-empirical model approaches, and CFD based simulations. The main achievement is the overall model frame which can be utilized for the further development and testing of new sub-models and theories, and for concentrating the knowledge gathered from the experimental work carried out at bench scale, pilot scale and industrial scale apparatus, and from the computational work performed by other modelling methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, a model called CFB3D is validated for oxygen combustion in circulating fluidized bed boiler. The first part of the work consists of literature review in which circulating fluidized bed and oxygen combustion technologies are studied. In addition, the modeling of circulating fluidized bed furnaces is discussed and currently available industrial scale three-dimensional furnace models are presented. The main features of CFB3D model are presented along with the theories and equations related to the model parameters used in this work. The second part of this work consists of the actual research and modeling work including measurements, model setup, and modeling results. The objectives of this thesis is to study how well CFB3D model works with oxygen combustion compared to air combustion in circulating fluidized bed boiler and what model parameters need to be adjusted when changing from air to oxygen combustion. The study is performed by modeling two air combustion cases and two oxygen combustion cases with comparable boiler loads. The cases are measured at Ciuden 30 MWth Flexi-Burn demonstration plant in April 2012. The modeled furnace temperatures match with the measurements as well in oxygen combustion cases as in air combustion cases but the modeled gas concentrations differ from the measurements clearly more in oxygen combustion cases. However, the same model parameters are optimal for both air and oxygen combustion cases. When the boiler load is changed, some combustion and heat transfer related model parameters need to be adjusted. To improve the accuracy of modeling results, better flow dynamics model should be developed in the CFB3D model. Additionally, more measurements are needed from the lower furnace to find the best model parameters for each case. The validation work needs to be continued in order to improve the modeling results and model predictability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a set of methods and models for estimation of iron and slag flows in the blast furnace hearth and taphole. The main focus was put on predicting taphole flow patterns and estimating the effects of various taphole conditions on the drainage behavior of the blast furnace hearth. All models were based on a general understanding of the typical tap cycle of an industrial blast furnace. Some of the models were evaluated on short-term process data from the reference furnace. A computational fluid dynamics (CFD) model was built and applied to simulate the complicated hearth flows and thus to predict the regions of the hearth exerted to erosion under various operating conditions. Key boundary variables of the CFD model were provided by a simplified drainage model based on the first principles. By examining the evolutions of liquid outflow rates measured from the furnace studied, the drainage model was improved to include the effects of taphole diameter and length. The estimated slag delays showed good agreement with the observed ones. The liquid flows in the taphole were further studied using two different models and the results of both models indicated that it is more likely that separated flow of iron and slag occurs in the taphole when the liquid outflow rates are comparable during tapping. The drainage process was simulated with an integrated model based on an overall balance analysis: The high in-furnace overpressure can compensate for the resistances induced by the liquid flows in the hearth and through the taphole. Finally, a recently developed multiphase CFD model including interfacial forces between immiscible liquids was developed and both the actual iron-slag system and a water-oil system in laboratory scale were simulated. The model was demonstrated to be a useful tool for simulating hearth flows for gaining understanding of the complex phenomena in the drainage of the blast furnace.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, it has been proposed that there are two type Ia supernova progenitors: short-lived and long-lived. On the basis of this idea, we develop a theory of a unified mechanism for the formation of the bimodal radial distribution of iron and oxygen in the Galactic disc. The underlying cause for the formation of the fine structure of the radial abundance pattern is the influence of the spiral arms, specifically the combined effect of the corotation resonance and turbulent diffusion. From our modelling, we conclude that in order to explain the bimodal radial distributions simultaneously for oxygen and iron and to obtain approximately equal total iron output from different types of supernovae, the mean ejected iron mass per supernova event should be the same as quoted in the literature if the maximum mass of stars, which eject heavy elements, is 50 M(circle dot). For the upper mass limit of 70 M(circle dot), the production of iron by a type II supernova explosion should increase by about 1.5 times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (I the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size of production lots. A mixed integer programming (MIP) formulation of the problem is proposed, but is impractical to solve in reasonable computing time for non-small instances. As a result, a faster relax-and-fix (RF) approach is developed that can also be used on a rolling horizon basis where only immediate-term schedules are implemented. As well as a MIP method to solve the basic RF approach, three variants of a local search method are also developed and tested using instances based on the literature. Finally, foundry-based tests with a real-order book resulted in a very substantial reduction of delivery delays and finished inventory, better use of capacity, and much faster schedule definition compared to the foundry`s own practice. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology to recover the non-ohmic properties of ZnO based varistors after degradation with long and short duration pulses was proposed in this work. The basic idea consists in submitt the degraded ceramics at different temperatures and oxygen flows. Thermal treatment at 900 degrees C for 2 h with oxygen flow of 15 l/h allowed to obtain better non-linear coefficient (alpha= 52.5) compared to the standard sample. Rietveld refinement showed that with the thermal treatment, the oxygen species and the beta-Bi2O3 phase, lost in the degradation process, are recovered in the grain boundary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (1) the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size of production lots. A mixed integer programming (MIP) formulation of the problem is proposed, but is impractical to solve in reasonable computing time for non-small instances. As a result, a faster relax-and-fix (RF) approach is developed that can also be used on a rolling horizon basis where only immediate-term schedules are implemented. As well as a MIP method to solve the basic RF approach, three variants of a local search method are also developed and tested using instances based on the literature. Finally, foundry-based tests with a real-order book resulted in a very substantial reduction of delivery delays and finished inventory, better use of capacity, and much faster schedule definition compared to the foundry's own practice. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium titanate was synthesized by the sol-gel method and characterized using X-ray diffraction, thermogravimetry-mass spectrometry, atomic absorption spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis and nitrogen physisorption. The non-calcined material was active as a catalyst in transesterification reactions and showed high stability. An appreciable loss of activity on the fourth reuse was accompanied by the appearance of a new species of oxygen and segregated sodium, identified by X-ray photoelectron spectroscopy (XPS). The XPS spectrum showed that the basic nature of the framework oxygen was inferior to the original basicity, which explained the decline in catalytic activity. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen is the basic molecule which supports life and it truly is “god's gift to life.” Despite its immense importance, research on “oxygen biology” has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word “hypoxia.” Scientists have focused on hypoxia-induced transcriptomics and molecular–cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall objective of this thesis was to gain further understanding of the non-enzymatic mechanisms involved in brown-rot wood decay, especially the role of pH, oxalic acid, and low molecular catecholate compounds on the dissolution and reduction of iron, and the formation of reactive oxygen species. Another focus of this study will be the potential application of a biomimetic free radical generating system inspired from fungi wood decay process, especially the non-enzymatic mechanism. The possible pathways of iron uptake and iron redox cycling in non-enzymatic brown-rot decay were investigated in this study. UV-Vis spectroscopy and HPLC were employed to study the kinetics and pathways of the interaction between iron and model catecholate compounds under different pH and chelator/iron molar ratio conditions. Iron chelation and reduction during early non-enzymatic wood decay processes have been studied in this thesis. The results indicate that the effects of the chelator/iron ratio, the pH, and other reaction parameters on the hydroxyl radical generation in a Fenton type system can be determined using ESR spin-trapping techniques. Data also support the hypothesis that superoxide radicals are involved in chelator-mediated Fenton processes. The mechanisms involved in free radical activation of Thermal Mechanical Pulp fibers were investigated. The activation of TMP fibers was evaluated by ESR measurement of free phenoxy radical generation on solid fibers. The results indicate that low molecular weight chelators can improve Fenton reactions, thus in turn stimulating the free radical activation of TMP fibers. A mediated Fenton system was evaluated for decolorization of several types of dyes. The result shows that the Fenton system mediated by a catecholate-type chelator effectively reduced the color of a diluted solution of synthetic dyes after 90 minutes of treatment at room temperature. The results show that compared to a neat Fenton process, the mediated Fenton decolorization process increased the production, and therefore the effective longevity, of hydroxyl radical species to increase the decolorization efficiency.