140 resultados para Bandpass
Resumo:
A strategy to extract turbulence structures from direct numerical simulation (DNS) data is described along with a systematic analysis of geometry and spatial distribution of the educed structures. A DNS dataset of decaying homogeneous isotropic turbulence at Reynolds number Reλ = 141 is considered. A bandpass filtering procedure is shown to be effective in extracting enstrophy and dissipation structures with their smallest scales matching the filter width, L. The geometry of these educed structures is characterized and classified through the use of two non-dimensional quantities, planarity' and filamentarity', obtained using the Minkowski functionals. The planarity increases gradually by a small amount as L is decreased, and its narrow variation suggests a nearly circular cross-section for the educed structures. The filamentarity increases significantly as L decreases demonstrating that the educed structures become progressively more tubular. An analysis of the preferential alignment between the filtered strain and vorticity fields reveals that vortical structures of a given scale L are most likely to align with the largest extensional strain at a scale 3-5 times larger than L. This is consistent with the classical energy cascade picture, in which vortices of a given scale are stretched by and absorb energy from structures of a somewhat larger scale. The spatial distribution of the educed structures shows that the enstrophy structures at the 5η scale (where η is the Kolmogorov scale) are more concentrated near the ones that are 3-5 times larger, which gives further support to the classical picture. Finally, it is shown by analysing the volume fraction of the educed enstrophy structures that there is a tendency for them to cluster around a larger structure or clusters of larger structures. Copyright © 2012 Cambridge University Press.
Resumo:
We present a broadly tunable active mode- locked. bre ring laser based on a semiconductor optical ampli. er ( SOA), with forward injection optical pulses. The laser can generate pulse sequence with pulsewidth about 12 ps and high output power up to 8.56dBm at 2.5 GHz stably. Incorporated with a wavelength- tunable optical bandpass. lter, the pulse laser can operate with a broad wavelength tunable span up to 37nm with almost constant pulsewidth. A detailed experimental analysis is also carried out to investigate the relationship between the power of the internal cavity and the pulsewidth of the output pulse sequence. The experimental con. guration of the pulse laser is very simple and easy to setup with no polarization- sensitive components.
Resumo:
This letter presents the effective design of a tunable 80 Gbit/s wavelength converter with a simple configuration consisting of a single semiconductor optical amplifier (SOA) and an optical bandpass filter (OBPF). Based on both cross-gain and cross-phase modulation in SOA, the polarity-preserved, ultrafast wavelength conversion is achieved by appropriately filtering the blue-chirped spectral component of a probe light. Moreover, the experiments are carried out to investigate into the wavelength tunability and the maximum tuning range of the designed wavelength converter. Our results show that a wide wavelength conversion range of nearly 35 nm is achieved with 21-nm downconversion and 14-nm upconversion, which is substantially limited by the operation wavelength ranges of a tunable OBPF and a tunable continuous-wave laser in our experiment. We also exploited the dynamics characteristics of the wavelength converter with variable input powers and different injection current of SOA. (C) 2008 Wiley Periodicals, Inc.
Resumo:
环境和机器人自身的不确定性影响轮式移动机器人的轨迹跟踪控制性能,此时仅仅使用里程计往往不能正确表达机器人的状态信息。在无速度传感器的情况下,讨论了使用加速度传感器和位置传感器的输出实时估计轮式移动机器人的速度。首先使用滑模观测器进行里程计信号处理,然后对车体加速度信号进行带通滤波提取车体扰动信息,通过频域融合信号表达轮式移动机器人的速度,并针对正交轮式全方位移动机器人进行了轨迹跟踪控制研究。试验结果表明采用融合数据可以更准确提供机器人的状态信息并得到更好的控制性能。
Resumo:
A frequency selective surface (FSS) which exploits the dielectric anisotropy of liquid crystals to generate an electronically tunable bandpass filter response at D Band (110-170 GHz) is presented. The device consists of two printed arrays of slot elements which are separated by a 130-mu m thick layer of liquid crystals. A 3% shift in the filter passband occurs when the substrate permittivity is increased by applying a control signal of 10 V. Measured results show that the insertion loss increases from -3.7 dB to -10.4 dB at resonance (134 GHz), thus demonstrating the potential to create a FSS which can be switched between a transmitting and a reflecting structure.
Resumo:
The design of a quasi-optical single sideband filter, which provides more than 30 dB of isolation between the frequency bands 294-305.5 and 329.5-341.5 GHz in the TM plane at 45 degrees incidence, is described. The structure, which consists of three free-standing arrays of dipole slot elements, generates a bandpass spectral response with an insertion loss below 0.5 dB at resonance. Simulated and measured transmission coefficients in the range 250-400 GHz are shown to be in good agreement.
Resumo:
Presented is a design methodology which permits the application of distributed coupled resonator bandpass filter principles to form wideband small-aperture evanescent-mode waveguide antenna designs. This approach permits matching of the complex antenna aperture admittance of an evanescent-mode open-ended waveguide to a real impedance generator, and thereby to a coaxial feed probe. A simulated reflection coefficient of < - 10 dB was obtained over a bandwidth of 20%, from 2.0-2.45 GHz, in a 2.58 GHz cutoff waveguide. Dielectric-filled propagating waveguide and air-filled evanescent-mode waveguide sections are used to form the resonators/coupling elements of the antenna's coupled resonator matching sections. Simulated realised gain variation from 3.4-5.0 dBi is observed across the bandwidth. The antenna's maximum aperture dimension is < 0.47 wavelength at the upper operating frequency and so it is suitable for use in a wide angle scanning phased array.
Resumo:
Email
Print
The accurate measurement of the permittivity, loss tangent and dielectric anisotropy DC bias dependence for two different liquid crystal (LC) materials in the frequency range 140-165 GHz is described. The electrical characteristics are obtained by curve fitting computed transmission coefficients to the experimental spectral response of a new class of electronically reconfigurable frequency selective surface. The periodic structure is designed to yield bandpass filter characteristics with and without an applied bias control voltage in order to measure the tunability of the LC material which is inserted in a 705 µm-thick cavity.
Resumo:
High-frequency fluctuations are observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument (Jess et al. 2010, Solar Phys, 261, 363) at the Dunn Solar Telescope. This can produce simultaneous observations in up to six channels, at different heights in the photosphere and chromosphere, at an unprecedentedly high cadence of 0.5 seconds, and at a spatial resolution of 100 km after photometrically correct speckle reconstruction. Here we concentrate on observations at two levels. The first is in the G-band of the CH radical at 4305.5Å, bandpass 9.2Å, with height of formation z <250 km at a cadence of 0.525 sec corresponding to Nyquist frequency 950 mHz. The second is in the Ca II K-line core at 3933.7Å, bandpass 1.0Å, with height of formation z <1300 km, and cadence 4.2 sec giving Nyquist frequency 120 mHz. The data span 53 min, and the maximum field of view is 45 Mm. The data were taken on 28 May 2009 in internetwork and network near disk center. Using both Fourier and Morlet wavelet methods we find evidence in the G-band spectra for intensity fluctuations above noise out to frequencies f >> 100 mHz. The K-line signal is noisier and is seen only for f <50 mHz. With wavelet techniques we find that G-band spectral power with 20 <f <100 mHz is clearly concentrated in the intergranular lanes and especially at the locations of magnetic elements indicated by G-band bright points. This wavelet power is highly intermittent in time. By cross-correlating the data we find that pulses of high-frequency G-band power in the photosphere tend to be followed by increases in K-line emission in the chromosphere with a time lag of about 2 min.
Resumo:
We present observational evidence of compressible MHD wave modes propagating from the solar photosphere through to the base of the transition region in a solar magnetic pore. High cadence images were obtained simultaneously across four wavelength bands using the Dunn Solar Telescope. Employing Fourier and wavelet techniques, sausage-mode oscillations displaying significant power were detected in both intensity and area fluctuations. The intensity and area fluctuations exhibit a range of periods from 181 to 412 s, with an average period∼290 s, consistent with the global p-mode spectrum. Intensity and area oscillations present in adjacent band passes were found to be out of phase with one another, displaying phase angles of 6.°12, 5.°82,and 15.°97 between the 4170 Å continuum–G-band,G-band–Na i D1, and Na i D1–Ca ii K heights, respectively, reiterating the presence of upwardly propagating sausage-mode waves. A phase relationship of ∼0° between same-bandpass emission and area perturbations of the pore best categorizes the waves as belonging to the “slow” regime of a dispersion diagram. Theoretical calculations reveal that the waves are surface modes, with initial photospheric energies in excess of 35,000 Wm‑2. The wave energetics indicate a substantial decrease in energy with atmospheric height, confirming that magnetic pores are able to transport waves that exhibit appreciable energy damping, which may release considerable energy into the local chromospheric plasma.
Resumo:
X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field.
Resumo:
O presente trabalho tem por objectivo estudar a caracterização e modelação de arquitecturas de rádio frequência para aplicações em rádios definidos por software e rádios cognitivos. O constante aparecimento no mercado de novos padrões e tecnologias para comunicações sem fios têm levantado algumas limitações à implementação de transceptores rádio de banda larga. Para além disso, o uso de sistemas reconfiguráveis e adaptáveis baseados no conceito de rádio definido por software e rádio cognitivo assegurará a evolução para a próxima geração de comunicações sem fios. A ideia base desta tese passa por resolver alguns problemas em aberto e propor avanços relevantes, tirando para isso partido das capacidades providenciadas pelos processadores digitais de sinal de forma a melhorar o desempenho global dos sistemas propostos. Inicialmente, serão abordadas várias estratégias para a implementação e projecto de transceptores rádio, concentrando-se sempre na aplicabilidade específica a sistemas de rádio definido por software e rádio cognitivo. Serão também discutidas soluções actuais de instrumentação capaz de caracterizar um dispositivo que opere simultaneamente nos domínios analógico e digital, bem como, os próximos passos nesta área de caracterização e modelação. Além disso, iremos apresentar novos formatos de modelos comportamentais construídos especificamente para a descrição e caracterização não-linear de receptores de amostragem passa-banda, bem como, para sistemas nãolineares que utilizem sinais multi-portadora. Será apresentada uma nova arquitectura suportada na avaliação estatística dos sinais rádio que permite aumentar a gama dinâmica do receptor em situações de multi-portadora. Da mesma forma, será apresentada uma técnica de maximização da largura de banda de recepção baseada na utilização do receptor de amostragem passa-banda no formato complexo. Finalmente, importa referir que todas as arquitecturas propostas serão acompanhadas por uma introdução teórica e simulações, sempre que possível, sendo após isto validadas experimentalmente por protótipos laboratoriais.
Resumo:
Next generation Global Navigation Satellite System (GNSS) receivers will operate in multiple navigation bands. An efficient way to achieve this with lower power and cost is to employ BandPass Sampling (BPS); nevertheless, the sampling operation injects large amounts of jitter noise, which degrades the performance of the receiver. Continuous–Time (CT) Delta–Sigma (ΔΣ) modulators are capable of suppressing this noise but the impact of clock jitter at the output of the Digital– to–Analog Converter (DAC) in the feedback path of the modulator should be taken into account. This paper presents an analytical approach for describing clock jitter in GNSS receivers when a CT–ΔΣ modulator is utilized for Analog–to–Digital Conversion (ADC). The validity of the presented approach is verified through time–domain simulations using a behavioural model of the fourth–order CT–ΔΣ modulator with 1–bit NRZ DAC feedback pulse.
Resumo:
This paper presents the design analysis of novel tunable narrow-band bandpass sigma-delta modulators, that can achieve concurrent multiple noise-shaping for multi-tone input signals. This approach utilises conventional comb filters in conjunction with FIR, or allpass IIR fractional delay filters, to deliver the desired nulls for the quantisation noise transfer function. Detailed simulation results show that FIR fractional delay comb filter based sigma-delta modulators tune accurately to most centre frequencies, but suffer from degraded resolution at frequencies close to Nyquist. However, superior accuracies are obtained from their allpass IIR fractional delay counterpart at the expense of a slight shift in noise-shaping bands at very high frequencies.