957 resultados para BRANCHIAL ARCH ANOMALIES
Resumo:
Forced vibration field tests and finite element studies have been conducted on Morrow Point (arch) Dam in order to investigate dynamic dam-water interaction and water compressibility. Design of the data acquisition system incorporates several special features to retrieve both amplitude and phase of the response in a low signal to noise environment. These features contributed to the success of the experimental program which, for the first time, produced field evidence of water compressibility; this effect seems to play a significant role only in the symmetric response of Morrow Point Dam in the frequency range examined. In the accompanying analysis, frequency response curves for measured accelerations and water pressures as well as their resonating shapes are compared to predictions from the current state-of-the-art finite element model for which water compressibility is both included and neglected. Calibration of the numerical model employs the antisymmetric response data since they are only slightly affected by water compressibility, and, after calibration, good agreement to the data is obtained whether or not water compressibility is included. In the effort to reproduce the symmetric response data, on which water compressibility has a significant influence, the calibrated model shows better correlation when water compressibility is included, but the agreement is still inadequate. Similar results occur using data obtained previously by others at a low water level. A successful isolation of the fundamental water resonance from the experimental data shows significantly different features from those of the numerical water model, indicating possible inaccuracy in the assumed geometry and/or boundary conditions for the reservoir. However, the investigation does suggest possible directions in which the numerical model can be improved.
Resumo:
Standard earthquake analyses of civil engineering structures use uniform ground motions even though considerable variations in both amplitude and phase can occur along the foundation interface for long-span bridges and large dams. The objective of this thesis is to quantify the effect that these nonuniformities have on the structural response.
The nonuniform, free-field motions of the foundation interface are assumed to be caused by incident plane body waves. The medium in which these waves travel is a linear, elastic half-space containing a canyon of uniform cross section in which the structure is placed. The solutions for the free-field motions that are due to incident SH, P and SV waves are calculated using the boundary element method.
An analysis of Pacoima (arch) dam located near Los Angeles, California, is performed for both uniform and nonuniform excitations. The important effect of nonuniformities in the free-field motions, sometimes leading to a decrease in the dam response and sometimes to an increase, is quantified.
Resumo:
We study the possibility of manipulating the focusing properties of a medium with electromagnetically induced transparency. In the focal region of focused ultraslow light pulses, the spectral anomalous behaviors can be actively modified by varying the control field intensity. Unlike the case in free space, we find in slow light focusing that the spectrum bandwidth of the incident field needed to produce observable spectral changes can be reduced by several orders. Numerical simulations with accessible parameters clearly show that spectral anomalies of focused mu s pulses are observable.
Resumo:
An article in the Engineering News-Record for March 30, 1923, describes a new concrete arch bridge across the Connecticut River between Springfield and West Springfield, Mass.
Resumo:
The osmotic pressure of the perivitelline fluid and the yolk of trout (Salmo trutta) eggs were measured separately by the Drucker-Schrein method. The permeability of the egg membrane and the variations in the osmotic pressure of the eggs when placed in salt solutions were also investigated.
Resumo:
The lattice anomalies and magnetic states in the (Fe100-xMnx)5Si3 alloys have been investigated. Contrary to what was previously reported, results of x-ray diffraction show a second phase (α') present in Fe-rich alloys and therefore strictly speaking a complete solid solution does not exist. Mössbauer spectra, measured as a function of composition and temperature, indicate the presence of two inequivalent sites, namely 6(g) site (designated as site I) and 4(d) (site II). A two-site model (TSM) has been introduced to interpret the experimental findings. The compositional variation of lattice parameters a and c, determined from the x-ray analysis, exhibits anomalies at x = 22.5 and x = 50, respectively. The former can be attributed to the effect of a ferromagnetic transition; while the latter is due to the effect of preferential substitution between Fe and Mn atoms according to TSM.
The reduced magnetization of these alloys deduced from magnetic hyperfine splittings has been correlated with the magnetic transition temperatures in terms of the molecular field theory. It has been found from both the Mössbauer effect and magnetization measurements that for composition 0 ≤ x ˂ 50 both sites I and II are ferromagnetic at liquid-nitrogen temperature and possess moments parallel to each other. In the composition range 50 ˂ x ≤ 100 , the site II is antiferromagnetic whereas site I is paramagnetic even at a temperature below the bulk Néel temperatures. In the vicinity of x = 50 however, site II is in a state of transition between ferromagnetism and antiferromagnetism. The present study also suggests that only Mn in site II are responsible for the antiferromagnetism in Mn5Si3 contrary to a previous report.
Electrical resistance has also been measured as a function of temperature and composition. The resistive anomalies observed in the Mn-rich alloys are believed to result from the effect of the antiferromagnetic Brillouin zone on the mobility of conduction electrons.
Resumo:
On the basis of diffraction integral and the expansion of the hard-aperture function into a finite series of complex Gaussian functions, an approximate expression for spatially fully coherent polychromatic hollow Gaussian beams passing through aperture lens is obtained. Detailed numerical results indicate that remarkable spectral changes always occurs near the points where the field amplitude has zero value. The effects of truncation parameter, Fresnel number and the beam order on spectral shifts and spectral switches are investigated numerically. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This present study investigates the influence of western Pacific tropical cyclone activity as possible centers of anomalous tropical heating on the large-scale circulation over the Pacific region. The characterization of tropical cyclone activity via an index based on anomalous 700 mb zonal wind is described first. Patterns of anomalous large-scale extratropical circulation anomalies based on composites of similar periods of tropical cyclone activity are then presented, followed by general conclusions.
Resumo:
How do tropical heating fluctuations create North American climate anomalies? We propose some answers using the results from a simplified global atmospheric model. We find that the South Asian-tropical west Pacific area is especially effective at stimulating North American responses. The relatively strong tropical/extratropical interaction between these two areas is the result of two major processes acting on the Rossby wave signal induced by the tropical heating fluctuations. These factors are: 1) Wave guiding by the Asian-north Pacific subtropical jet; and 2) Wave amplification within unstable regions of the jet flank. These factors allow relatively small, remote, and short-term tropical fluctuations to have relatively large impacts on North American climate.