912 resultados para BRANCHED-CHAIN AMINO ACIDS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are two binding sites on the β1-adrenoceptor (AR), β1H and β1L corresponding to high and low affinity binding sites respectively, which can be activated to cause cardiostimulation (reviewed Kaumann and Molenaar, 2008). Some β-blockers that block β1AR and β2ARs can activate β1LARs at higher concentrations than those required to cause blockade. The β2AR does not form a corresponding low affinity binding site (Baker et al 2002) and therefore we postulated that heterologous amino acids are responsible for the formation of β1LAR. Our aim was to investigate whether heterologous amino acids of transmembrane domain V (TMDV) of β1AR and β2ARs contribute to β1LAR. β1ARs, β2ARs and mutant β1ARs containing all (β1(β2TMDV)AR) or single amino acids of TMDV of the β2AR were prepared and stably expressed in Chinese Hamster Ovary cells. Concentration-effect curves for cyclicAMP accumulation were carried out for (-)-CGP12177 or (-)-isoprenaline in the absence or presence of (-)-bupranolol. _______________________________________________________________________ (-)-CGP 12177 (-)-Bupranolol affinity (pKB) pEC50 vs (-)-CGP 12177 vs (-)-isoprenaline _______________________________________________________________________ β1AR 8.00 ± 0.11 (11) 7.23 ± 0.23 (5) 9.52 ± 0.28 (5) β2AR (high density) 9.24 ± 0.14 (5) 9.82 ± 0.52 (8) xPaulxxxxxxx β2AR (low density) no effect β1(β2TMV)AR 8.86 ± 0.10 (15) 8.06 ± 0.17 (8) 9.08 ± 0.22 (6) β1(V230I)AR 9.07 ± 0.07 (10) 7.64 ± 0.12 (8) 9.36 ± 0.28 (9) β1(R222Q)AR 8.09 ± 0.29 (6) 7.33 ± 0.23 (5) 9.36 ± 0.08 (6) β1(V230A)AR 7.59 ± 0.09 (6) 7.32 ± 0.24 (4) 8.62 ± 0.18 (5) _______________________________________________________________________ The potency of (-)-CGP12177 was higher at β2AR than at β1AR consistent with activation through a low affinity site at the β1AR (β1LAR) but not β2AR. The presence of V230 in β1AR accounted for the lower potency of (-)-CGP 12177. The affinity of (-)-bupranolol at β1AR and mutants was higher when determined with (-)-isoprenaline than with (-)-CGP 12177. The affinity of (-)-bupranolol determined against (-)-CGP 12177 was lower at β1AR compared to β2AR. The presence of V230 in β1AR accounted in part for the lower affinity. In conclusion V230 of the β1AR contributes in part to the low affinity binding site of β1AR. Baker JG, Hall IP, Hill SJ (2002). Pharmacological characterization of CGP12177 at the human β2-adrenoceptor. Br J Pharmacol 137, 400−408 Kaumann AJ, Molenaar P (2008) The low-affinity site of the β1-adrenoceptor and its relevance to cardiovascular pharmacology. Pharmacol Ther 118, 303-336

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unnatural amino acids are a growing class of intermediates required for pharmaceuticals, agrochemicals and other industrial products. However, no single method has proven sufficiently versatile to prepare these compounds broadly at scale. To address this need, we have developed a general chemoenzymatic process to prepare enantiomerically pure L- and D-amino acids in high yield by deracemization of racemic starting materials. This method involves the concerted action of an enantioselective oxidase biocatalyst and a non-selective chemical reducing agent to effect the stereoinversion of one enantiomer and can result in an enantiomeric excess of >99% from the starting racemate, and product yields of over 90%. This approach compares very favourably with resolution processes, which have a maximum single-pass yield of 50%. We have developed efficient methods to adapt the process towards new target compounds and to optimize key factors that influence process efficiency and offer competitive economics at scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general chemo-enzymatic process has been developed to prepare enantiomerically pure L- and D-amino acids in high yield by deracemisation of racemic starting materials. The method has been developed from initial academic studies to be a robust, scalable industrial process. Unnatural amino acids, in high optical purity, are a rapidly growing class of intermediates required for pharmaceuticals, agrochemicals and other fine chemical applications. However, no single method has proven sufficiently adaptable to prepare these compounds generally at large scale. Our approach uses an enantioselective oxidase biocatalyst and a non-selective chemical reducing agent to effect the stereoinversion of one enantiomer and can result in an enantiomeric excess of > 99 % from a starting racemate, and product yields over 90 %. The current approach compares very favourably to resolution methods which have a maximum single pass yield of 50 %. Efficient methods have been developed to adapt the biocatalyst used in this process towards new target compounds and to optimise key factors which improve the process efficiency and offer competitive economics at scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DL- and L-arginine complexes of oxalic acid are made up of zwitterionic positively charged amino acid molecules and semi-oxalate ions. The dissimilar molecules aggregate into separate alternating layers in the former. The basic unit in the arginine layer is a centrosymmetric dimer, while the semi-oxalate ions form hydrogen-bonded strings in their layer. In the L-arginine complex each semi-oxalate ion is surrounded by arginine molecules and the complex can be described as an inclusion compound. The oxalic acid complexes of basic amino acids exhibit a variety of ionization states and stoichiometry. They illustrate the effect of aggregation and chirality on ionization state and stoichiometry, and that of molecular properties on aggregation. The semi-oxalate/oxalate ions tend to be planar, but large departures from planarity are possible. The amino acid aggregation in the different oxalic acid complexes do not resemble one another significantly, but the aggregation of a particular amino acid in its oxalic acid complex tends to have similarities with its aggregation in other structures. Also, semi-oxalate ions aggregate into similar strings in four of the six oxalic acid complexes. Thus, the intrinsic aggregation propensities of individual molecules tend to be retained in the complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 100,000 x g supernatant fraction prepared from developing groundnut seeds (30-35 days after flowering) catalyzed the synthesis of fatty acids from [l-14C]acetate at a rate of 120nmoles of acetate incorporated per hr per gram fresh weight of tissue. 90% of this incorporated label was associated with fatty acids. The major fatty acids formed were stearic- (77%) and palmitic acids (14%) with 4% of oleic acid. The fatty acid synthetase activity was stable when stored at 0-4 degrees C for at least fifteen days. It is concluded from these results that acetyl-coA carboxylase and all the enzymes of fatty acid synthetase from developing groundnut seeds are soluble.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on the synthesis of a wide range of ferrocenyl-substituted amino acids and peptides in excellent yield. Conjugation is established via copper-catalyzed 1,3-dipolar cycloaddition. Two complementary strategies were employed for conjugation, one involving cycloaddition of amino acid derived azides with ethynyl ferrocene 1 and the other involves cycloaddition between amino acid derived alkynes with ferrocene-derived azides 2 and 3. Labeling of amino acids at multiple sites with ferrocene is discussed. A new route to 1,1'-unsymmetrically substituted ferrocene conjugates is reported. A novel ferrocenophane 19 is accessed via bimolecular condensation of amino acid derived bis-alkyne 9b with the azide 2. The electrochemical behavior of some selected ferrocene conjugates has been studied by cyclic voltammetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The host-guest technique has been applied to the determination of the helix-coil stability constants of two naturally occurring amino acids, L-alanine and L-leucine, in a nonaqueous solvent system. Random copolymers containing L-alanine and L-leucine, respectively, as guest residues and -benzyl-L-glutamate as the host residue were synthesized. The polymers were fractionated and characterized for their amino acid content, molecular weight, and helix-coil transition behavior in a dichloroacetic acid (DCA)-1,2-dichloroethane (DCE) mixture. Two types of helix-coil transitions were carried out on the copolymers: solvent-induced transitions in DCA-DCE mixtures at 25°C and thermally induced transitions in a 82:18 (wt %) DCA-DCE mixture. The thermally induced transitions were analyzed by statistical mechanical methods to determine the Zimm-Bragg parameters, and s, of the guest residues. The experimental data indicate that, in the nonaqueous solvent, the L-alanine residue stabilizes the -helical conformation more than the L-leucine residue does. This is in contrast to their behavior in aqueous solution, where the reverse is true. The implications of this finding for the analysis of helical structures in globular proteins are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new form of L-histidine L-aspartate monohydrate crystallizes in space group P22 witha = 5.131(1),b = 6.881(1),c= 18.277(2) Å,β= 97.26(1)° and Z = 2. The structure has been solved by the direct methods and refined to anR value of 0.044 for 1377 observed reflections. Both the amino acid molecules in the complex assume the energetically least favourable allowed conformation with the side chains staggered between the α-amino and α-scarboxylate groups. This results in characteristic distortions in some bond angles. The unlike molecules aggregate into alternating double layers with water molecules sandwiched between the two layers in the aspartate double layer. The molecules in each layer are arranged in a head-to-tail fashion. The aggregation pattern in the complex is fundamentally similar to that in other binary complexes involving commonly occurring L amino acids, although the molecules aggregate into single layers in them. The distribution of crystallographic (and local) symmetry elements in the old form of the complex is very different from that in the new form. So is the conformation of half the histidine molecules. Yet, the basic features of molecular aggregation, particularly the nature and the orientation of head-to-tail sequences, remain the same in both the forms. This supports the thesis that the characteristic aggregation patterns observed in crystal structures represent an intrinsic property of amino acid aggregation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hexahydrate of a 1:1 complex between L-histidyl-L-serine and glycyl-L-glutamic acid crystallizes in space group P1 with a = 4.706(1), b= 8.578(2), c= 16.521(3) ÅA; α= 85.9(1), β= 89.7(1)°, = 77.4(1). The crystal structure, solved by direct methods, has been refined to an R value of 0.046 for 2150 observed reflections. The two peptide molecules in the structure have somewhat extended conformations. The unlike molecules aggregate into separate alternating layers. Each layer is stabilized by hydrogen bonded head-to-tail sequences as well as sequences of hydrogen bonds involving peptide groups. The arrangement of molecules in each layer is similar to one of the plausible idealized arrangements of L-alanyl-L-alanine worked out from simple geometrical considerations. Adjacent layers in the structure are held together by interactions involving side chains as well as water molecules. The water structure observed in the complex provides a good model, at atomic resolution, for that in protein crystals. An interesting feature of the crystal structure is the existence of two water channels in the interfaces between adjacent peptide layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L-Serine-L-ascorbic acid, C3HTNOa. C6HsO6, a 1:1 complex between the amino acid serine and the vitamin ascorbic acid, crystallizes in the orthorhombic space group P2~2~2~ with four formula units in a cell of dimensions a = 5.335(3), b = 8.769(2), c = 25.782 (5) A. The structure was solved by direct methods and refined by full-matrix least squares to an R of 0.036 for 951 observed reflections. Both molecules are neutral in the structure. The conformation of the serine molecule is different from that observed in the crystal structures of L-serine, DL-serine and L-serine monohydrate. The enediol group in the ascorbic acid molecule is planar, whereas significant departures from planarity are observed in the lactone group. The conformation of this molecule is similar to that observed in arginine ascorbate. The unlike molecules aggregate into separate columns in the crystal structure. The columns are held together by hydrogen bonds. Among these, a pair of hydrogen bonds between the enediol group of ascorbic acid and the carboxylate group of serine provides a possible model for a specific interaction between ascorbic acid and a carboxylate ion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzymes belonging to the M1 family play important cellular roles and the key amino acids (aa) in the catalytic domain are conserved. However, C-terminal domain aa are highly variable and demonstrate distinct differences in organization. To address a functional role for the C-terminal domain, progressive deletions were generated in Tricorn interacting factor F2 from Thermoplasma acidophilum (F2) and Peptidase N from Escherichia coli (PepN). Catalytic activity was partially reduced in PepN lacking 4 C-terminal residues (PepNΔC4) whereas it was greatly reduced in F2 lacking 10 C-terminal residues (F2ΔC10) or PepN lacking eleven C-terminal residues (PepNΔC11). Notably, expression of PepNΔC4, but not PepNΔC11, in E. coliΔpepN increased its ability to resist nutritional and high temperature stress, demonstrating physiological significance. Purified C-terminal deleted proteins demonstrated greater sensitivity to trypsin and bound stronger to 8-amino 1-napthalene sulphonic acid (ANS), revealing greater numbers of surface exposed hydrophobic aa. Also, F2 or PepN containing large aa deletions in the C-termini, but not smaller deletions, were present in high amounts in the insoluble fraction of cell extracts probably due to reduced protein solubility. Modeling studies, using the crystal structure of E. coli PepN, demonstrated increase in hydrophobic surface area and change in accessibility of several aa from buried to exposed upon deletion of C-terminal aa. Together, these studies revealed that non-conserved distal C-terminal aa repress the surface exposure of apolar aa, enhance protein solubility, and catalytic activity in two soluble and distinct members of the M1 family.