836 resultados para BRAIN-REGIONS
Resumo:
β-Site amyloid precursor protein cleaving enzyme (BACE1) is the rate-limiting enzyme for production of Aβ peptides, proposed to drive the pathological changes found in Alzheimer’s disease (AD). Reticulon 3 (RTN3) is a negative modulator of BACE1 (β-secretase) proteolytic activity, while peptidylprolyl isomerase (cyclophilin)-like 2 (PPIL2) positively regulated BACE1 gene expression in a cell-based assay. This study aimed to analyze RTN3 and PPIL2 mRNA levels in four brain regions from individuals with AD and controls. BACE1 mRNA had been previously quantified in the samples, as had glial fibrillary acidic protein (GFAP) and neuron-specific enolase (NSE), to track changing cell populations in the tissue. mRNA levels in the human post mortem brain tissue were assayed using quantitative real-time polymerase chain reaction (qPCR) and qbasePLUS, employing validated stably expressed reference genes. No differences in RTN3 or PPIL2 mRNA levels were found in individuals with AD, compared to controls. Both RTN3 and PPIL2 mRNA levels correlated significantly with BACE1 mRNA and all three showed similar disease stage-dependent changes with respect to NSE and GFAP. These findings indicated that the in vitro data demonstrating an effect of PPIL2 on BACE1 expression have functional relevance in vivo. Further research into BACE1-interacting proteins could provide a fruitful approach to the modulation of this protease and consequently Aβ production.
Resumo:
Disturbed lipid metabolism is a well-established feature of human Alzheimer's disease (AD). The present study used gas chromatography-mass spectrometry (GC-MS) analysis of fatty acid methyl esters (FAMES) to profile all detectable fatty acid (FA) species present in post-mortem neocortical tissue (Brodmann 7 region). Quantitative targeted analysis was undertaken from 29 subjects (n=15 age-matched controls; n=14 late-stage AD). GC-MS analysis of FAMES detected a total of 24 FAs and of these, 20 were fully quantifiable. The results showed significant and wide ranging elevations in AD brain FA concentrations. A total of 9 FAs were elevated in AD with cis-13,16-docosenoic acid increased most (170%; P=0.033). Intriguingly, docosahexanoic acid (DHA; C22:6) concentrations were elevated (47%; P=0.018) which conflicts with the findings of others (unaltered or decreased) in some brain regions after the onset of AD. Furthermore, our results appear to indicate that subject gender influences brain FA levels in AD subjects (but not in age-matched control subjects). Among AD subjects 7 FA species were significantly higher in males than in females. These preliminary findings pinpoint FA disturbances as potentially important in the pathology of AD. Further work is required to determine if such changes are influenced by disease severity or different types of dementia.
Resumo:
We addressed the questions of how cerebral glucose transport and phosphorylation change under acute hypoglycemia and what the underlying mechanisms of adaptation are. METHODS: Quantitative (18)F-FDG PET combined with the acquisition of real-time arterial input function was performed on mice. Hypoglycemia was induced and maintained by insulin infusion. PET data were analyzed with the 2-tissue-compartment model for (18)F-FDG, and the results were evaluated with Michaelis-Menten saturation kinetics. RESULTS: Glucose clearance from plasma to brain (K1,glc) and the phosphorylation rate constant increased with decreasing plasma glucose (Gp), in particular at a Gp of less than 2.5 mmol/L. Estimated cerebral glucose extraction ratios taking into account an increased cerebral blood flow (CBF) at a Gp of less than 2 mmol/L were between 0.14 and 0.79. CBF-normalized K1,glc values were in agreement with saturation kinetics. Phosphorylation rate constants indicated intracellular glucose depletion at a Gp of less than 2-3 mmol/L. When brain regions were compared, glucose transport under hypoglycemia was lowest in the hypothalamus. CONCLUSION: Alterations in glucose transport and phosphorylation, as well as intracellular glucose depletion, under acute hypoglycemia can be modeled by saturation kinetics taking into account an increase in CBF. Distinct transport kinetics in the hypothalamus may be involved in its glucose-sensing function.
Resumo:
Adolescence, defined as a transition phase toward autonomy and independence, is a natural time of learning and adjustment, particularly in the setting of long-term goals and personal aspirations. It also is a period of heightened sensation seeking, including risk taking and reckless behaviors, which is a major cause of morbidity and mortality among teenagers. Recent observations suggest that a relative immaturity in frontal cortical neural systems may underlie the adolescent propensity for uninhibited risk taking and hazardous behaviors. However, converging preclinical and clinical studies do not support a simple model of frontal cortical immaturity, and there is substantial evidence that adolescents engage in dangerous activities, including drug abuse, despite knowing and understanding the risks involved. Therefore, a current consensus considers that much brain development during adolescence occurs in brain regions and systems that are critically involved in the perception and evaluation of risk and reward, leading to important changes in social and affective processing. Hence, rather than naive, immature and vulnerable, the adolescent brain, particularly the prefrontal cortex, should be considered as prewired for expecting novel experiences. In this perspective, thrill seeking may not represent a danger but rather a window of opportunities permitting the development of cognitive control through multiple experiences. However, if the maturation of brain systems implicated in self-regulation is contextually dependent, it is important to understand which experiences matter most. In particular, it is essential to unveil the underpinning mechanisms by which recurrent adverse episodes of stress or unrestricted access to drugs can shape the adolescent brain and potentially trigger life-long maladaptive responses.
Resumo:
The lithium-pilocarpine model mimics most features of human temporal lobe epilepsy. Following our prior studies of cerebral metabolic changes, here we explored the expression of transporters for glucose (GLUT1 and GLUT3) and monocarboxylates (MCT1 and MCT2) during and after status epilepticus (SE) induced by lithium-pilocarpine in PN10, PN21, and adult rats. In situ hybridization was used to study the expression of transporter mRNAs during the acute phase (1, 4, 12 and 24h of SE), the latent phase, and the early and late chronic phases. During SE, GLUT1 expression was increased throughout the brain between 1 and 12h of SE, more strongly in adult rats; GLUT3 increased only transiently, at 1 and 4h of SE and mainly in PN10 rats; MCT1 was increased at all ages but 5-10-fold more in adult than in immature rats; MCT2 expression increased mainly in adult rats. At all ages, MCT1 and MCT2 up-regulation was limited to the circuit of seizures while GLUT1 and GLUT3 changes were more widespread. During the latent and chronic phases, the expression of nutrient transporters was normal in PN10 rats. In PN21 rats, GLUT1 was up-regulated in all brain regions. In contrast, in adult rats GLUT1 expression was down-regulated in the piriform cortex, hilus and CA1 as a result of extensive neuronal death. The changes in nutrient transporter expression reported here further support previous findings in other experimental models demonstrating rapid transcriptional responses to marked changes in cerebral energetic/glucose demand.
Resumo:
The effects of chronic liver insufficiency resulting from end-to-side portacaval anastomosis (PCA) on glutamine synthetase (GS) activities, protein and gene expression were studied in brain, liver and skeletal muscle of male adult rats. Four weeks following PCA, activities of GS in cerebral cortex and cerebellum were reduced by 32\% and 37\% (p<0.05) respectively whereas GS activities in muscle were increased by 52\% (p<0.05). GS activities in liver were decreased by up to 90\% (p<0.01), a finding which undoubtedly reflects the loss of GS-rich perivenous hepatocytes following portal-systemic shunting. Immunoblotting techniques revealed no change in GS protein content of brain regions or muscle but a significant loss in liver of PCA rats. GS mRNA determined by semi-quantitative RT-PCR was also significantly decreased in the livers of PCA rats compared to sham-operated controls. These findings demonstrate that PCA results in a loss of GS gene expression in the liver and that brain does not show a compensatory induction of enzyme activity, rendering it particularly sensitive to increases in ammonia in chronic liver failure. The finding of a post-translational increase of GS in muscle following portacaval shunting suggests that, in chronic liver failure, muscle becomes the major organ responsible for the removal of excess blood-borne ammonia.
Resumo:
La Vitamine K (VK) est largement reconnue pour son rôle dans la coagulation sanguine toutefois, de plus en plus de travaux indiquent son implication dans la fonction cérébrale. La VK est requise pour l'activation de différentes protéines, par exemple la protéine Gas6, et la ménaquinone-4 (MK-4), le principal vitamère K dans le cerveau, est impliquée dans le métabolisme des sphingolipides. Dans un rapport précédent, nous avons montré qu'un régime alimentaire faible en VK tout au long de la vie était associé à des déficits cognitifs chez des rats âgés. La warfarine sodique est un puissant antagoniste de la VK qui agit en bloquant le cycle de la VK, provoquant un «déficit relatif de VK » au niveau cellulaire. À la lumière du rôle émergent de la VK dans le cerveau, la warfarine pourrait représenter un facteur de risque pour la fonction cérébrale. Ce travail est donc pertinente en raison de la forte proportion d'adultes traîtés à la warfarine sodique. Dans la présente étude, 14 rats mâles Wistar ont été traités avec 14 mg de warfarine/kg /jour (dans l'eau potable) et des injections sous-cutanées de VK (85 mg/kg), 3x/sem, pendant 10 semaines. Quatorze rats témoins ont été traités avec de l'eau normale et injectés avec une solution saline. Les rats ont été soumis à différents tests comportementaux après quoi les niveaux de phylloquinone, MK-4, sphingolipides (cérébroside, sulfatide, sphingomyéline, céramide et gangliosides), et les sous-types de gangliosides (GT1b, GD1a, GM1, GD1b), ont été évalués dans différentes régions du cerveau. Comparativement aux rats du groupe contrôle, les rats traités à la warfarine présentaient des latences plus longues au test de la piscine de Morris (p <0,05) ainsi qu'une hypoactivité et un comportement exploratoire plus faible au test de « l’open field » (p <0,05). Le traitement par warfarine a également entraîné une diminution spectaculaire du niveau de MK-4 dans toutes les régions du cerveau (p <0,001), une altération des concentrations de sphingolipidiques, en particulier dans le cortex frontal et le mésencéphale (p <0,05), et une perte de différences régionales sphingolipidiques, notamment pour les gangliosides. Le traitement par warfarine a été associé à un niveau inférieur de GD1a dans l'hippocampe et un niveau supérieur de GT1b dans le cortex préfrontal et le striatum. En conclusion, la déficience en VK induite par warfarine altère les niveaux de VK et sphingolipides dans le cerveau, avec de potentiels effets néfastes sur les fonctions cérébrales.
Resumo:
Adrenergic stimulation has an inyortant role in the pancreatic It-cell proliferation and insulin secretion. In the present study. we have investigaled how sympathetic system mgulales the panrrealic n I rnerui nr ht an:ilyiing I'pinephi inn 1111 ), Norepinephrinc (NE) and /1-adrenergic receptor changes in the brain as (%eli is in the I swirls. Fill and NII showed a significant decrease in the brain regions, pancreas and plasma :rt 72Ius iller partial prurcrealectonty. We observed an increase in the circulating insulin levels at 72 hrs. Scatchard analysis using I CHI propranolol showed a significant increase in the number of loth the low affinity and high affinity t-adrenergic receplors in cerebral cortex and hypothalamus of partially pancreatectornised rats during peak DNA synthesis. The affinity of the receptors decrea,ed significantly in the low and high affinity receptors of cerebral cortex and the high affinity hypothalamic receptors. In file brain stein, low affinity receptors were increased significantly during regeneration whereas there was no change in the high affinity receptors. The pancreatic ff-adrenergic receptors were also up regulated at 72 firs after partial panerealectony. In vitro studies showed that /i-adrenergic receptors are positive regulators of islet cell proliferation and insulin secretion. Thus our results suggest that the t-adrenergic receptors are functionally enhanced during pancreatic regeneration, which in turn increases pancreatic ft-cell proliferation an(hilisulin secretion in wean hug rats.
Resumo:
Kinetic parameters of brain glutamate dehydrogenase (GDH) were compared in the brain stem, cerebellum and cerebral cortex of three weeks and one year old streptozotocin (STZ) induced four day diabetic rats with respective controls. A single intrafemoral dose of STZ (60mg/Kg body weight) was administered to induce diabetes in both age groups. After four days the blood glucose levels showed a significant increase in the diabetic animals of both age groups compared with the respective controls. The increase in blood glucose was significant in one year old compared to the three weeks old diabetic rats. The Vmm of the enzyme was decreased in all the brain regions studied, of the three weeks old diabetic rats without any significant change in the Km. In the adult the Vmax of GDH was increased in cerebellum and brain stem but was unchanged in the cerebral cortex. The K. was unchanged in cerebellum and cerebral cortex but was increased in the brain stem. These results suggest there may be an important regulatory role of the glutamate pathway in brain neural network disturbances and neuronal degeneration in diabetes as a function of age.
Resumo:
Parkinson's disease is a chronic progressive neurodegenerative movement disorder characterized by a profound and selective loss of nigrostriatal dopaminergic neurons. Our findings demonstrated that glutamatergic system is impaired during PD. The evaluations of these damages have important implications in understanding the molecular mechanism underlying motor, cognitive and memory deficits in PD. Our results showed a significant increase of glutamate content in the brain regions of 6- OHDA infused rat compared to control. This increased glutamate content caused an increase in glutamatergic and NMDA receptors function. Glutamate receptor subtypes- NMDAR1, NMDA2B and mGluR5 have differential regulatory role in different brain regions during PD. The second messenger studies confirmed that the changes in the receptor levels alter the IP3, cAMP and cGMP content. The alteration in the second messengers level increased the expression of pro-apoptotic factors - Bax and TNF-α, intercellular protein - α-synuclein and reduced the expression of transcription factor - CREB. These neurofunctional variations are the key contributors to motor and cognitive abnormalities associated with PD. Nestin and GFAP expression study confirmed that 5-HT and GABA induced the differentiation and proliferation of the BMC to neurons and glial cells in the SNpc of rats. We also observed that activated astrocytes are playing a crucial role in the proliferation of transplanted BMC which makes them significant for stem cell-based therapy. Our molecular and behavioural results showed that 5-HT and GABA along with BMC potentiates a restorative effect by reversing the alterations in glutamate receptor binding, gene expression and behaviour abnormality that occur during PD. The therapeutic significance in Parkinson’s disease is of prominence.
Resumo:
In the present study a detailed investigation on the alterations of dopamine and its receptors in the brain regions of streptozotocin induced diabetic and insulin induced hypoglycaemic rats were carried out. Glutamate receptor, NMDARI gene expression in the hypoglycaemic and hyperglycaemic brain was also studied. EEG recording in hypoglycaemic and hyperglycaemic will be carried out to measure brain activity. in vitro studies on glucose uptake and insulin secretion, with and without specific antagonists were carried out to confirm the specific receptor subtypes - DA D1, DA D2 and NMDA involved in the functional regulation during hyperglycaemic and hypoglycaemic brain damage. The molecular studies on the brain damage through dopaminergic and glutamergic receptors will elucidate the therapeutic role in the corrective measures of the damage to the brain during hypoglycaemia and hyperglycaemia. This has importance in the management of diabetes and antidiabetic treatment for better intellectual functioning of the individual.
Resumo:
BACKGROUND AND PURPOSE: We have recently shown that the phytocannabinoid Delta9-tetrahydrocannabivarin (Delta9-THCV) and the CB1 receptor antagonist AM251 increase inhibitory neurotransmission in mouse cerebellum and also exhibit anticonvulsant activity in a rat piriform cortical (PC) model of epilepsy. Possible mechanisms underlying cannabinoid actions in the CNS include CB1 receptor antagonism (by displacing endocannabinergic tone) or inverse agonism at constitutively active CB1 receptors. Here, we investigate the mode of cannabinoid action in [35S]GTPgammaS binding assays. EXPERIMENTAL APPROACH: Effects of Delta9-THCV and AM251 were tested either alone or against WIN55,212-2-induced increases in [35S]GTPgammaS binding in mouse cerebellar and PC membranes. Effects on non-CB receptor expressing CHO-D2 cell membranes were also investigated. KEY RESULTS :Delta9-THCV and AM251 both acted as potent antagonists of WIN55,212-2-induced increases in [35S]GTPgammaS binding in cerebellar and PC membranes (Delta9-THCV: pA2=7.62 and 7.44 respectively; AM251: pA2=9.93 and 9.88 respectively). At micromolar concentrations, Delta9-THCV or AM251 alone caused significant decreases in [35S]GTPgammaS binding; Delta9-THCV caused larger decreases than AM251. When applied alone in CHO-D2 membranes, Delta9-THCV and AM251 also caused concentration-related decreases in G protein activity. CONCLUSIONS AND IMPLICATIONS: Delta9-THCV and AM251 act as CB1 receptors antagonists in the cerebellum and PC, with AM251 being more potent than Delta9-THCV in both brain regions. Individually, Delta9-THCV or AM251 exhibited similar potency at CB1 receptors in the cerebellum and the PC. At micromolar concentrations, Delta9-THCV and AM251 caused a non-CB receptor-mediated depression of basal [35S]GTPgammaS binding.
Resumo:
Recent studies have identified a distributed network of brain regions thought to support cognitive reappraisal processes underlying emotion regulation in response to affective images, including parieto-temporal regions and lateral/medial regions of prefrontal cortex (PFC). A number of these commonly activated regions are also known to underlie visuospatial attention and oculomotor control, which raises the possibility that people use attentional redeployment rather than, or in addition to, reappraisal as a strategy to regulate emotion. We predicted that a significant portion of the observed variance in brain activation during emotion regulation tasks would be associated with differences in how participants visually scan the images while regulating their emotions. We recorded brain activation using fMRI and quantified patterns of gaze fixation while participants increased or decreased their affective response to a set of affective images. fMRI results replicated previous findings on emotion regulation with regulation differences reflected in regions of PFC and the amygdala. In addition, our gaze fixation data revealed that when regulating, individuals changed their gaze patterns relative to a control condition. Furthermore, this variation in gaze fixation accounted for substantial amounts of variance in brain activation. These data point to the importance of controlling for gaze fixation in studies of emotion regulation that use visual stimuli.
Resumo:
Previous investigations comparing auditory event-related potentials (ERPs) to words whose meanings infants did or did not comprehend, found bilateral differences in brain activity to known versus unknown words in 13-month-old infants, in contrast with unilateral, left hemisphere, differences in activity in 20-month-old infants. We explore two alternative explanations for these findings. Changes in hemispheric specialization may result from a qualitative shift in the way infants process known words between 13 and 20 months. Alternatively, hemispheric specialization may arise from increased familiarity with the individual words tested. We contrasted these two explanations by measuring ERPs from 20-month-old infants with high and low production scores, for novel words they had just learned. A bilateral distribution of ERP differences was observed in both groups of infants, though the difference was larger in the left hemisphere for the high producers. These findings suggest that word familiarity is an important factor in determining the distribution of brain regions involved in word learning. An emerging left hemispheric specialization may reflect increased efficiency in the manner in which infants process familiar and novel words. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
The free radical theory of ageing postulates that age-associated neurodegeneration is caused by an imbalance between pro-oxidants and antioxidants resulting in oxidative stress. The current study showed regional variation in brain susceptibility to age-associated oxidative stress as shown by increased lipofuscin deposition and protein carbonyl levels in male rats of age 15-16 months compared to control ones (3-5 months). The hippocampus is the area most vulnerable to change compared to the cortex and cerebellum. However, proteasomal enzyme activity was not affected by age in any of the brain regions studied. Treatment with melatonin or coenzyme Q10 for 4 weeks reduced the lipofuscin content of the hippocampus and carbonyl level. However, both melatonin and coenzyme Q10 treatments inhibited beta-glutamyl peptide hydrolase activity. This suggests that these molecules can alter proteasome function independently of their antioxidant actions. (c) 2005 Elsevier Inc. All rights reserved.