931 resultados para BRAF mutation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence indicates that the estrogen receptor-a-negative, androgen receptor (AR)- positive molecular apocrine subtype of breast cancer is driven by AR signaling. The MDA-MB-453 cell line is the prototypical model of this breast cancer subtype; its proliferation is stimulated by androgens such as 5a-dihydrotestosterone (DHT) but inhibited by the progestin medroxyprogesterone acetate (MPA) via AR-mediated mechanisms. We report here that the AR gene in MDAMB- 453 cells contains a G-T transversion in exon 7, resulting in a receptor variant with a glutamine to histidine substitution at amino acid 865 (Q865H) in the ligand binding domain. Compared with wild-type AR, the Q865H variant exhibited reduced sensitivity to DHT and MPA in transactivation assays in MDA-MB-453 and PC-3 cells but did not respond to non-androgenic ligands or receptor antagonists. Ligand binding, molecular modeling, mammalian two-hybrid and immunoblot assays revealed effects of the Q865H mutation on ligand dissociation, AR intramolecular interactions, and receptor stability. Microarray expression profiling demonstrated that DHT and MPA regulate distinct transcriptional programs in MDA-MB-453 cells. Gene Set Enrichment Analysis revealed that DHT- but not MPA-regulated genes were associated with estrogen-responsive transcriptomes from MCF-7 cells and the Wnt signaling pathway. These findings suggest that the divergent proliferative responses of MDA-MB-453 cells to DHT and MPA result from the different genetic programs elicited by these two ligands through the AR-Q865H variant. This work highlights the necessity to characterize additional models of molecular apocrine breast cancer to determine the precise role of AR signaling in this breast cancer subtype. Endocrine-Related Cancer (2012) 19 599–613

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequent in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1P29S) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1P29S showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melanoma has historically been refractive to traditional therapeutic approaches. As such, the development of novel drug strategies has been needed to improve rates of overall survival in patients with melanoma, particularly those with late stage or disseminated disease. Recent success with molecularly based targeted drugs, such as Vemurafenib in BRAF-mutant melanomas, has now made “personalized medicine” a reality within some oncology clinics. In this sense, tailored drugs can be administered to patients according to their tumor “mutation profiles.” The success of these drug strategies, in part, can be attributed to the identification of the genetic mechanisms responsible for the development and progression of metastatic melanoma. Recently, the advances in sequencing technology have allowed for comprehensive mutation analysis of tumors and have led to the identification of a number of genes involved in the etiology of metastatic melanoma. As the methodology and costs associated with next-generation sequencing continue to improve, this technology will be rapidly adopted into routine clinical oncology practices and will significantly impact on personalized therapy. This review summarizes current and emerging molecular targets in metastatic melanoma, discusses the potential application of next-generation sequencing within the paradigm of personalized medicine, and describes the current limitations for the adoption of this technology within the clinic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BRAF is one of the most commonly mutated proto-oncogenes and plays a significant role in the development of numerous cancers of high clinical impact. Due to the commonality of BRAF mutations, a number of BRAF inhibitors have been developed as tools in the management of patients with cancers dependent on the action of mutant BRAF to drive cellular proliferation. In this review, we examine the current state of clinical trials and laboratory research concerning BRAF inhibitors in development and available for clinical use. We contrast the effectiveness of type-I and type-II BRAF inhibitors, the former typically showing much more restricted inhibitory selectivity and greater patient response rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BRAF is a major oncoprotein and oncogenic mutations in BRAF are found in a significant number of cancers, including melanoma, thyroid cancer, colorectal cancer and others. Consequently, BRAF inhibitors have been developed as treatment options for cancers with BRAF mutations which have shown some success in improving patient outcomes in clinical trials. Development of resistance to BRAF kinase inhibitors is common, however, and overcoming this resistance is an area of significant concern for clinicians, patients and researchers alike. In this review, we identify the mechanisms of BRAF kinase inhibitor resistance and discuss the implications for strategies to overcome this resistance in the context of new approaches such as multi-kinase targeted therapies and emerging RNA interference based technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that in melanoma cells oncogenic BRAF, acting through MEK and the transcription factor BRN2, downregulates the cGMP-specific phosphodiesterase PDE5A. Although PDE5A downregulation causes a small decrease in proliferation, its major impact is to stimulate a dramatic increase in melanoma cell invasion. This is because PDE5A downregulation leads to an increase in cGMP, which induces an increase in cytosolic Ca2+, stimulating increased contractility and inducing invasion. PDE5A downregulation also this leads to an increase in short-term and long-term colonization of the lungs by melanoma cells. We do not observe this pathway in NRAS mutant melanoma or BRAF mutant colorectal cells. Thus, we show that in melanoma cells oncogenic BRAF induces invasion through downregulation of PDE5A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oncogene-induced senescence (OIS) is a potent tumor-suppressive mechanism that is thought to come at the cost of aging. The Forkhead box O (FOXO) transcription factors are regulators of life span and tumor suppression. However, whether and how FOXOs function in OIS have been unclear. Here, we show a role for FOXO4 in mediating senescence by the human BRAFV600E oncogene, which arises commonly in melanoma. BRAFV600E signaling through mitogen-activated protein kinase/extracellular signal-regulated kinase kinase resulted in increased reactive oxygen species levels and c-Jun NH 2 terminal kinase-mediated activation of FOXO4 via its phosphorylation on Thr223, Ser226, Thr447, and Thr451. BRAFV600E-induced FOXO4 phosphorylation resulted in p21cip1-mediated cell senescence independent of p16 ink4a or p27kip1. Importantly, melanocyte-specific activation of BRAFV600E in vivo resulted in the formation of skin nevi expressing Thr223/Ser226-phosphorylated FOXO4 and elevated p21cip1. Together, these findings support a model in which FOXOs mediate a trade-off between cancer and aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: The phase III FLEX study (NCT00148798) in advanced non-small-cell lung cancer indicated that the survival benefit associated with the addition of cetuximab to cisplatin and vinorelbine was limited to patients whose tumors expressed high levels of epidermal growth factor receptor (EGFR) (immunohistochemistry score of >/=200; scale 0-300). We assessed whether the treatment effect was also modulated in FLEX study patients by tumor EGFR mutation status. METHODS: A tumor mutation screen of EGFR exons 18 to 21 included 971 of 1125 (86%) FLEX study patients. Treatment outcome in low and high EGFR expression groups was analyzed across efficacy endpoints according to tumor EGFR mutation status. RESULTS: Mutations in EGFR exons 18 to 21 were detected in 133 of 971 tumors (14%), 970 of which were also evaluable for EGFR expression level. The most common mutations were exon 19 deletions and L858R (124 of 133 patients; 93%). In the high EGFR expression group (immunohistochemistry score of >/=200), a survival benefit for the addition of cetuximab to chemotherapy was demonstrated in patients with EGFR wild-type (including T790M mutant) tumors. Although patient numbers were small, those in the high EGFR expression group whose tumors carried EGFR mutations may also have derived a survival benefit from the addition of cetuximab to chemotherapy. Response data suggested a cetuximab benefit in the high EGFR expression group regardless of EGFR mutation status. CONCLUSIONS: The survival benefit associated with the addition of cetuximab to first-line chemotherapy for advanced non-small-cell lung cancer expressing high levels of EGFR is not limited by EGFR mutation status.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Premature aging syndromes recapitulate many aspects of natural aging and provide an insight into this phenomenon at a molecular and cellular level. The progeria syndromes appear to cause rapid aging through disruption of normal nuclear structure. Recently, a coding mutation (c.34G > A [p.A12T]) in the Barrier to Autointegration Factor 1 (BANF1) gene was identified as the genetic basis of Néstor-Guillermo Progeria syndrome (NGPS). This mutation was described to cause instability in the BANF1 protein, causing a disruption of the nuclear envelope structure. Results Here we demonstrate that the BANF1 A12T protein is indeed correctly folded, stable and that the observed phenotype, is likely due to the disruption of the DNA binding surface of the A12T mutant. We demonstrate, using biochemical assays, that the BANF1 A12T protein is impaired in its ability to bind DNA while its interaction with nuclear envelope proteins is unperturbed. Consistent with this, we demonstrate that ectopic expression of the mutant protein induces the NGPS cellular phenotype, while the protein localizes normally to the nuclear envelope. Conclusions Our study clarifies the role of the A12T mutation in NGPS patients, which will be of importance for understanding the development of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to investigate whether molecular analysis can be used to refine risk assessment, direct adjuvant therapy, and identify actionable alterations in high-risk endometrial cancer. TransPORTEC, an international consortium related to the PORTEC3 trial, was established for translational research in high-risk endometrial cancer. In this explorative study, routine molecular analyses were used to detect prognostic subgroups: p53 immunohistochemistry, microsatellite instability and POLE proofreading mutation. Furthermore, DNA was analyzed for hotspot mutations in 13 additional genes (BRAF, CDKNA2, CTNNB1, FBXW7, FGFR2, FGFR3, FOXL2, HRAS, KRAS, NRAS, PIK3CA, PPP2R1A, and PTEN) and protein expression of ER, PR, PTEN, and ARID1a was analyzed. Rates of distant metastasis, recurrence-free, and overall survival were calculated using the Kaplan-Meier method and log-rank test. In total, samples of 116 high-risk endometrial cancer patients were included: 86 endometrioid; 12 serous; and 18 clear cell. For endometrioid, serous, and clear cell cancers, 5-year recurrence-free survival rates were 68%, 27%, and 50% (P=0.014) and distant metastasis rates 23%, 64%, and 50% (P=0.001), respectively. Four prognostic subgroups were identified: (1) a group of p53-mutant tumors; (2) microsatellite instable tumors; (3) POLE proofreading-mutant tumors; and (4) a group with no specific molecular profile (NSMP). In group 3 (POLE-mutant; n=14) and group 2 (microsatellite instable; n=19) patients, no distant metastasis occurred, compared with 50% distant metastasis rate in group 1 (p53-mutant; n=36) and 39% in group 4 (NSMP; P<0.001). Five-year recurrence-free survival was 93% and 95% for group 3 (POLE-mutant) and group 2 (microsatellite instable) vs 42% (group 1, p53-mutant) and 52% (group 4, NSMP; P<0.001). Targetable FBXW7 and FGFR2 mutations (6%), alterations in the PI3K-AKT pathway (60%) and hormone receptor positivity (45%) were frequently found. In conclusion, molecular analysis of high-risk endometrial cancer identifies four distinct prognostic subgroups, with potential therapeutic implications. High frequencies of targetable alterations were identified and may serve as targets for individualized treatment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations of UDP-N-acetyl-alpha-D-galactosamine polypeptide N-acetyl galactosaminyl transferase 3 (GALNT3) result in familial tumoural calcinosis (FTC) and the hyperostosis-hyperphosphataemia syndrome (HHS), which are autosomal recessive disorders characterised by soft-tissue calcification and hyperphosphataemia. To facilitate in vivo studies of these heritable disorders of phosphate homeostasis, we embarked on establishing a mouse model by assessing progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU), and identified a mutant mouse, TCAL, with autosomal recessive inheritance of ectopic calcification, which involved multiple tissues, and hyperphosphataemia; the phenotype was designated TCAL and the locus, Tcal. TCAL males were infertile with loss of Sertoli cells and spermatozoa, and increased testicular apoptosis. Genetic mapping localized Tcal to chromosome 2 (62.64-71.11 Mb) which contained the Galnt3. DNA sequence analysis identified a Galnt3 missense mutation (Trp589Arg) in TCAL mice. Transient transfection of wild-type and mutant Galnt3-enhanced green fluorescent protein (EGFP) constructs in COS-7 cells revealed endoplasmic reticulum retention of the Trp589Arg mutant and Western blot analysis of kidney homogenates demonstrated defective glycosylation of Galnt3 in Tcal/Tcal mice. Tcal/Tcal mice had normal plasma calcium and parathyroid hormone concentrations; decreased alkaline phosphatase activity and intact Fgf23 concentrations; and elevation of circulating 1,25-dihydroxyvitamin D. Quantitative reverse transcriptase-PCR (qRT-PCR) revealed that Tcal/Tcal mice had increased expression of Galnt3 and Fgf23 in bone, but that renal expression of Klotho, 25-hydroxyvitamin D-1α-hydroxylase (Cyp27b1), and the sodium-phosphate co-transporters type-IIa and -IIc was similar to that in wild-type mice. Thus, TCAL mice have the phenotypic features of FTC and HHS, and provide a model for these disorders of phosphate metabolism. © 2012 Esapa et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic kidney disease (CKD) is characterized by renal fibrosis that can lead to end-stage renal failure, and studies have supported a strong genetic influence on the risk of developing CKD. However, investigations of the underlying molecular mechanisms are hampered by the lack of suitable hereditary models in animals. We therefore sought to establish hereditary mouse models for CKD and renal fibrosis by investigating mice treated with the chemical mutagen N-ethyl-N-nitrosourea, and identified a mouse with autosomal recessive renal failure, designated RENF. Three-week old RENF mice were smaller than their littermates, whereas at birth they had been of similar size. RENF mice, at 4-weeks of age, had elevated concentrations of plasma urea and creatinine, indicating renal failure, which was associated with small and irregularly shaped kidneys. Genetic studies using DNA from 10 affected mice and 91 single nucleotide polymorphisms mapped the Renf locus to a 5.8Mbp region on chromosome 17E1.3. DNA sequencing of the xanthine dehydrogenase (Xdh) gene revealed a nonsense mutation at codon 26 that co-segregated with affected RENF mice. The Xdh mutation resulted in loss of hepatic XDH and renal Cyclooxygenase-2 (COX-2) expression. XDH mutations in man cause xanthinuria with undetectable plasma uric acid levels and three RENF mice had plasma uric acid levels below the limit of detection. Histological analysis of RENF kidney sections revealed abnormal arrangement of glomeruli, intratubular casts, cellular infiltration in the interstitial space, and interstitial fibrosis. TUNEL analysis of RENF kidney sections showed extensive apoptosis predominantly affecting the tubules. Thus, we have established a mouse model for autosomal recessive early-onset renal failure due to a nonsense mutation in Xdh that is a model for xanthinuria in man. This mouse model could help to increase our understanding of the molecular mechanisms associated with renal fibrosis and the specific roles of XDH and uric acid. © 2012 Piret et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The genetic mutation resulting in osteogenesis imperfecta (OI) type V was recently characterised as a single point mutation (c.-14C > T) in the 5' untranslated region (UTR) of IFITM5, a gene encoding a transmembrane protein with expression restricted to skeletal tissue. This mutation creates an alternative start codon and has been shown in a eukaryotic cell line to result in a longer variant of IFITM5, but its expression has not previously been demonstrated in bone from a patient with OI type V. Methods Sanger sequencing of the IFITM5 5' UTR was performed in our cohort of subjects with a clinical diagnosis of OI type V. Clinical data was collated from referring clinicians. RNA was extracted from a bone sample from one patient and Sanger sequenced to determine expression of wild-type and mutant IFITM5. Results: All nine subjects with OI type V were heterozygous for the c.-14C > T IFITM5 mutation. Clinically, there was heterogeneity in phenotype, particularly in the manifestation of bone fragility amongst subjects. Both wild-type and mutant IFITM5 mRNA transcripts were present in bone. Conclusions The c.-14C > T IFITM5 mutation does not result in an RNA-null allele but is expressed in bone. Individuals with identical mutations in IFITM5 have highly variable phenotypic expression, even within the same family.