949 resultados para BLOOD-FLOW RESERVE
Resumo:
Background. Anastomotic leak remains a common and potentially deleterious complication after esophagectomy. Preoperative embolization of the left gastric artery and splenic artery (PAE) has been suggested to lower anastomotic leak rates. We present the results of our 5-year experience with this technique.Methods. All patients undergoing PAE before esophagectomy since introduction of this technique in 2004 were compared in a 1: 2 matched-pair analysis with patients without PAE. Matching criteria were type of anastomosis, neoadjuvant treatment, comorbidity, and age. Data were derived from a retrospective chart review from 2000 to 2006 that was perpetuated as a prospective database up to date. Outcome measures were anastomotic leak, overall complications, and hospital stay.Results. Between 2000 and 2009, 102 patients underwent esophagectomy for cancer in our institution with an overall leak rate of 19% and a mortality of 8%. All 19 patients having PAE since 2004 were successfully matched 1: 2 to 38 control patients without PAE; both groups were similar regarding demographics and operation characteristics. Two PAE (11%) and 8 control patients (21%) had an anastomotic leak, but the difference was statistically not significant (p = 0.469). Overall and major complication rates for PAE and control group were 89% versus 79% (p = 0.469) and 37% versus 34% (p = 1.000), respectively. Median intensive care unit and hospital stay were 3 versus 3 days (p = 1.000) and 22 versus 17 days (p = 0.321), respectively.Conclusions. In our experience, PAE has no significant impact on complications and anastomotic leak in particular after esophagectomy. (Ann Thorac Surg 2011;91:1556-61) (C) 2011 by The Society of Thoracic Surgeons
Resumo:
Neuropeptide Y (NPY) is a peptide with vasoconstrictor properties known to be present in the central nervous system as well as in sympathetic nerve endings and the adrenal medulla. The purposes of this study were to investigate in normotensive conscious rats the effects of nonpressor doses of NPY on cardiac output and regional blood flow distribution (using radiolabeled microspheres) as well as on plasma renin activity, plasma catecholamine and vasopressin levels. NPY (0.1 microgram/min) infused i.v. for 30 min modified neither blood pressure nor heart rate. Cardiac index was at comparable levels in NPY- as in vehicle-treated rats (17.7 +/- 1.6, n = 8, vs. 21.3 +/- 0.9 ml/min/100 g, n = 8, mean +/- S.E.M.). There was no significant difference in regional blood flow distribution between the two groups of rats, except for the large intestine (0.42 +/- 0.06 vs. 0.71 +/- 0.1 ml/min/g in NPY- and vehicle-treated rats, respectively, P less than .05). Basal plasma renin activity and catecholamine levels were not modified by NPY whereas plasma vasopressin levels were lower (P less than .05) in rats given NPY (0.76 +/- 0.3 pg/ml, n = 8) than in those having received the vehicle (2.2 +/- 0.4 pg/ml).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Early detection of pathophysiological factors associated with permanent brain damage is a major issue in neonatal medicine. The aim of our study was to evaluate the significance of the CO2 reactivity of cerebral blood flow (CBF) in neonates with perinatal risk factors. Fourteen ventilated neonates with perinatal risk factors (pathological cardiotocogramm, low cord pH, postpartal encephalopathy) were enrolled into this prospective study. The study was performed 18-123 h after birth. CBF was measured using the noninvasive intravenous 133Xe method. Two measurements were taken with a minimal PaCO2-difference of 5 mm Hg. From the two CBF values the CO2 reactivity was calculated. Outcome was evaluated 1 year after birth. The CBF values at a lower PaCO2 ranged from 6.6 to 115. 2 ml/100 g brain issue/min (median = 18.2) and at a higher PaCO2 level from 7.1 to 125.7 ml/100 g brain tissue/min (median = 18.75). The calculated CO2 reactivity ranged from -9.6 to 6.6% (median 1.1%) change in CBF/mm Hg change in PaCO2. CO2 reactivity correlated with lowest pH (r2 = 0.35, p = 0.02). Two infants died, one of neonatal sepsis, the other of heart failure. Neurological outcome at the age of 1 year was normal in 11 patients, 1 had severe cerebral palsy. From the 12 surviving patients the patient with severe neurological deficit showed the highest CBF values (125.7 ml/100 g/min). Impaired chemical coupling of cerebral blood flow is compatible with intact neurological outcome in neonates with perinatal risk factors. CO2 reactivity in these newborns correlates with the lowest pH and may reflect the severity of perinatal asphyxia.
Resumo:
OBJECTIVE: This study was undertaken to investigate how aging affects dermal microvascular reactivity in skin areas differentially exposed to sunlight, and therefore to different degrees of photoaging. METHODS: We assessed, in young (18-30 years, n = 13) and aged males (≥60 years, n = 13), the thigh, forearm, and forehead's skin vasodilatory response to local heating (LTH) with a LDI. In each subject and at each location, local Tskin was brought from 34°C (baseline) to 39 or 41°C for 30 minutes, to effect submaximal vasodilation, with maximal vasodilation then elicited by further heating to 44°C. RESULTS: The CVCs evaluated at baseline and after maximal vasodilation (CVCmax ) were higher in the forehead than in the two other anatomical locations. On all locations, CVCmax decreased with age but less markedly in the forehead compared to the two other locations. When expressed in % of CVCmax , the plateau increase of CVCs in response to submaximal temperatures (39 and 41°C) did not vary with age, and minimally so with location. CONCLUSION: Skin aging, whether intrinsic or combined with photoaging, reduces the maximal vasodilatory capacity of the dermal microcirculation, but not its reactivity to local heating.
Resumo:
BACKGROUND AND PURPOSE: Knowledge of cerebral blood flow (CBF) alterations in cases of acute stroke could be valuable in the early management of these cases. Among imaging techniques affording evaluation of cerebral perfusion, perfusion CT studies involve sequential acquisition of cerebral CT sections obtained in an axial mode during the IV administration of iodinated contrast material. They are thus very easy to perform in emergency settings. Perfusion CT values of CBF have proved to be accurate in animals, and perfusion CT affords plausible values in humans. The purpose of this study was to validate perfusion CT studies of CBF by comparison with the results provided by stable xenon CT, which have been reported to be accurate, and to evaluate acquisition and processing modalities of CT data, notably the possible deconvolution methods and the selection of the reference artery. METHODS: Twelve stable xenon CT and perfusion CT cerebral examinations were performed within an interval of a few minutes in patients with various cerebrovascular diseases. CBF maps were obtained from perfusion CT data by deconvolution using singular value decomposition and least mean square methods. The CBF were compared with the stable xenon CT results in multiple regions of interest through linear regression analysis and bilateral t tests for matched variables. RESULTS: Linear regression analysis showed good correlation between perfusion CT and stable xenon CT CBF values (singular value decomposition method: R(2) = 0.79, slope = 0.87; least mean square method: R(2) = 0.67, slope = 0.83). Bilateral t tests for matched variables did not identify a significant difference between the two imaging methods (P >.1). Both deconvolution methods were equivalent (P >.1). The choice of the reference artery is a major concern and has a strong influence on the final perfusion CT CBF map. CONCLUSION: Perfusion CT studies of CBF achieved with adequate acquisition parameters and processing lead to accurate and reliable results.
Resumo:
BACKGROUND: So far, none of the existing methods on Murray's law deal with the non-Newtonian behavior of blood flow although the non-Newtonian approach for blood flow modelling looks more accurate. MODELING: In the present paper, Murray's law which is applicable to an arterial bifurcation, is generalized to a non-Newtonian blood flow model (power-law model). When the vessel size reaches the capillary limitation, blood can be modeled using a non-Newtonian constitutive equation. It is assumed two different constraints in addition to the pumping power: the volume constraint or the surface constraint (related to the internal surface of the vessel). For a seek of generality, the relationships are given for an arbitrary number of daughter vessels. It is shown that for a cost function including the volume constraint, classical Murray's law remains valid (i.e. SigmaR(c) = cste with c = 3 is verified and is independent of n, the dimensionless index in the viscosity equation; R being the radius of the vessel). On the contrary, for a cost function including the surface constraint, different values of c may be calculated depending on the value of n. RESULTS: We find that c varies for blood from 2.42 to 3 depending on the constraint and the fluid properties. For the Newtonian model, the surface constraint leads to c = 2.5. The cost function (based on the surface constraint) can be related to entropy generation, by dividing it by the temperature. CONCLUSION: It is demonstrated that the entropy generated in all the daughter vessels is greater than the entropy generated in the parent vessel. Furthermore, it is shown that the difference of entropy generation between the parent and daughter vessels is smaller for a non-Newtonian fluid than for a Newtonian fluid.
Resumo:
OBJECTIVES: The role of angioplasty/stenting procedures, neurointerventionist experience, vascular risk factors, medical treatment and blood flow velocities were analysed to identify possible causes of intra-stent restenosis (ISR) following stenting of cervical and/or intracranial arteries, assuming progressive atherosclerosis to be the shared mechanism in both territories. Patients. 26 cerebrovascular patients subjected to stenting of severe (≥85%) symptomatic or asymptomatic carotid stenoses or moderate-to-severe (≥50%) intracranial or vertebral stenoses were included. METHODS: Clinical, radiological and ultrasonographic follow-up data were analysed retrospectively. RESULTS: Overall, stenting of the internal carotid artery (ICA) induced significant reductions in peak systolic velocities at 2 years (96±31cm/s vs. 358.2±24.9cm/s at baseline). The procedure-related ischemic complications rate was 7.4% (one hemispheric stroke and one TIA). The rate of ISR≤50% was 8% in the ICA at 2 years; was 50% in the common carotid artery (CCA) at 1 year, with concomitant distal ICA stenosis in 75% of CCA stenting, but all ISR were asymptomatic. Patients with ISR of the ICA were significantly younger (56.8±4.5 vs. 71.3±3.6 years, P=0.042) and had significantly more risk factors (5.5±0.9 vs. 3±0.3, P=0.012). No ISR≥70% was detected. CONCLUSIONS: ISR is relatively infrequent and, when present, it is mild and asymptomatic. Restenosis is more frequent in younger patients and those with several risk factors, and it may also be related to stenting of previous carotid endarterectomy.
Resumo:
PAH (N-(4-aminobenzoyl)glycin) clearance measurements have been used for 50 years in clinical research for the determination of renal plasma flow. The quantitation of PAH in plasma or urine is generally performed by colorimetric method after diazotation reaction but the measurements must be corrected for the unspecific residual response observed in blank plasma. We have developed a HPLC method to specifically determine PAH and its metabolite NAc-PAH using a gradient elution ion-pair reversed-phase chromatography with UV detection at 273 and 265 nm, respectively. The separations were performed at room temperature on a ChromCart (125 mmx4 mm I.D.) Nucleosil 100-5 microm C18AB cartridge column, using a gradient elution of MeOH-buffer pH 3.9 1:99-->15:85 over 15 min. The pH 3.9 buffered aqueous solution consisted in a mixture of 375 ml sodium citrate-citric acid solution (21.01 g citric acid and 8.0 g NaOH per liter), added up with 2.7 ml H3PO4 85%, 1.0 g of sodium heptanesulfonate and completed ad 1000 ml with ultrapure water. The N-acetyltransferase activity does not seem to notably affect PAH clearances, although NAc-PAH represents 10.2+/-2.7% of PAH excreted unchanged in 12 healthy subjects. The performance of the HPLC and the colorimetric method have been compared using urine and plasma samples collected from healthy volunteers. Good correlations (r=0.94 and 0.97, for plasma and urine, respectively) are found between the results obtained with both techniques. However, the colorimetric method gives higher concentrations of PAH in urine and lower concentrations in plasma than those determined by HPLC. Hence, both renal (ClR) and systemic (Cls) clearances are systematically higher (35.1 and 17.8%, respectively) with the colorimetric method. The fraction of PAH excreted by the kidney ClR/ClS calculated from HPLC data (n=143) is, as expected, always <1 (mean=0.73+/-0.11), whereas the colorimetric method gives a mean extraction ratio of 0.87+/-0.13 implying some unphysiological values (>1). In conclusion, HPLC not only enables the simultaneous quantitation of PAH and NAc-PAH, but may also provide more accurate and precise PAH clearance measurements.
Resumo:
Previous studies have demonstrated that clinical pulpal pain can induce the expression of pro-inflammatory neuropeptides in the adjacent gingival crevice fluid (GCF). Vasoactive agents such as substance P (SP) are known to contribute to the inflammatory type of pain and are associated with increased blood flow. More recent animal studies have shown that application of capsaicin on alveolar mucosa provokes pain and neurogenic vasodilatation in the adjacent gingiva. Pain-associated inflammatory reactions may initiate expression of several pro- and anti-inflammatory mediators. Collagenase-2 (MMP-8) has been considered to be the major destructive protease, especially in the periodontitis-affected gingival crevice fluid (GCF). MMP-8 originates mostly from neutrophil leukocytes, the first line of defence cells that exist abundantly in GCF, especially in inflammation. With this background, we wished to clarify the spatial extensions and differences between tooth-pain stimulation and capsaicin-induced neurogenic vasodilatation in human gingiva. Experiments were carried out to study whether tooth stimulation and capsaicin stimulation of alveolar mucosa would induce changes in GCF MMP-8 levels and whether tooth stimulation would release neuropeptide SP in GCF. The experiments were carried out on healthy human volunteers. During the experiments, moderate and high intensity painful tooth stimulation was performed by a constant current tooth stimulator. Moderate tooth stimulation activates A-delta fibres, while high stimulation also activates C-fibres. Painful stimulation of the gingiva was achieved by topical application of capsaicin-moistened filter paper on the mucosal surface. Capsaicin is known to activate selectively nociceptive C-fibres of stimulated tissue. Pain-evoked vasoactive changes in gingivomucosal tissues were mapped by laser Doppler imaging (LDI), which is a sophisticated and non-invasive method for studying e.g. spatial and temporal characteristics of pain- and inflammation-evoked blood flow changes in gingivomucosal tissues. Pain-evoked release of MMP-8 in GCF samples was studied by immunofluorometric assay (IFMA) and Western immunoblotting. The SP levels in GCF were analysed by Enzyme immunoassay (EIA). During the experiments, subjective stimulus-evoked pain responses were determined by a visual analogue pain scale. Unilateral stimulation of alveolar mucosa and attached gingiva by capsaicin evoked a distinct neurogenic vasodilatation in the ipsilateral gingiva, which attenuated rapidly at the midline. Capsaicin stimulation of alveolar mucosa provoked clear inflammatory reactions. In contrast to capsaicin stimuli, tooth stimulation produced symmetrical vasodilatations bilaterally in the gingiva. The ipsilateral responses were significantly smaller during tooth stimulation than during capsaicin stimuli. The current finding – that tooth stimulation evokes bilateral vasodilatation while capsaicin stimulation of the gingiva mainly produces unilateral vasodilatation – emphasises the usefulness of LDI in clarifying spatial features of neurogenic vasoactive changes in the intra-oral tissues. Capsaicin stimulation of the alveolar mucosa induced significant elevations in MMP-8 levels and activation in GCF of the adjacent teeth. During the experiments, no marked changes occurred in MMP-8 levels in the GCF of distantly located teeth. Painful stimulation of the upper incisor provoked elevations in GCF MMP-8 and SP levels of the stimulated tooth. The GCF MMP-8 and SP levels of the non-stimulated teeth were not changed. These results suggest that capsaicin-induced inflammatory reactions in gingivomucosal tissues do not cross the midline in the anterior maxilla. The enhanced reaction found during stimulation of alveolar mucosa indicates that alveolar mucosa is more sensitive to chemical irritants than the attached gingiva. Analysis of these data suggests that capsaicin-evoked neurogenic inflammation in the gingiva can trigger the expression and activation of MMP-8 in GCF of the adjacent teeth. In this study, it is concluded that experimental tooth pain at C-fibre intensity can induce local elevations in MMP-8 and SP levels in GCF. Depending on the role of MMP-8 in inflammation, in addition to surrogated tissue destruction, the elevated MMP-8 in GCF may also reflect accelerated local defensive and anti-inflammatory reactions.