808 resultados para BLIND EQUALIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a hierarchical blind script identifier for 11 different Indian scripts. An initial grouping of the 11 scripts is accomplished at the first level of this hierarchy. At the subsequent level, we recognize the script in each group. The various nodes of this tree use different feature-classifier combinations. A database of 20,000 words of different font styles and sizes is collected and used for each script. Effectiveness of Gabor and Discrete Cosine Transform features has been independently, evaluated using nearest neighbor linear discriminant and support vector machine classifiers. The minimum and maximum accuracies obtained, using this hierarchical mechanism, are 92.2% and 97.6%, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present robust semi-blind (SB) algorithms for the estimation of beamforming vectors for multiple-input multiple-output wireless communication. The transmitted symbol block is assumed to comprise of a known sequence of training (pilot) symbols followed by information bearing blind (unknown) data symbols. Analytical expressions are derived for the robust SB estimators of the MIMO receive and transmit beamforming vectors. These robust SB estimators employ a preliminary estimate obtained from the pilot symbol sequence and leverage the second-order statistical information from the blind data symbols. We employ the theory of Lagrangian duality to derive the robust estimate of the receive beamforming vector by maximizing an inner product, while constraining the channel estimate to lie in a confidence sphere centered at the initial pilot estimate. Two different schemes are then proposed for computing the robust estimate of the MIMO transmit beamforming vector. Simulation results presented in the end illustrate the superior performance of the robust SB estimators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we propose a method for blind separation of d co-channel BPSK signals arriving at an antenna array. Our method involves two steps. In the first step, the received data vectors at the output of the array is grouped into 2d clusters. In the second step, we assign the 2d d-tuples with ±1 elements to these clusters in a consistent fashion. From the knowledge of the cluster to which a data vector belongs, we estimate the bits transmitted at that instant. Computer simulations are used to study the performance of our method

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of estimating multiple Carrier Frequency Offsets (CFOs) in the uplink of MIMO-OFDM systems with Co-Channel (CC) and OFDMA based carrier allocation is considered. The tri-linear data model for generalized, multiuser OFDM system is formulated. Novel blind subspace based estimation of multiple CFOs in the case of arbitrary carrier allocation scheme in OFDMA systems and CC users in OFDM systems based on the Khatri-Rao product is proposed. The method works where the conventional subspace method fails. The performance of the proposed methods is compared with pilot based Least-Squares method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide a filterbank precoding framework (FBP) for frequency selective channels using the minimum mean squared error (MMSE) criterion. The design obviates the need for introducing a guard interval between successive blocks, and hence can achieve the maximum possible bandwidth efficiency. This is especially useful in cases where the channel is of a high order. We treat both the presence and the absence of channel knowledge at the transmitter. In the former case, we obtain the jointly optimal precoder-equalizer pair of the specified order. In the latter case, we use a zero padding precoder, and obtain the MMSE equalizer. No restriction on the dimension or nature of the channel matrix is imposed. Simulation results indicate that the filterbank approach outperforms block based methods like OFDM and eigenmode precoding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a belief propagation (BP) based equalizer for ultrawideband (UWB) multiple-input multiple-output (MIMO) inter-symbol interference (ISI) channels characterized by severe delay spreads. We employ a Markov random field (MRF) graphical model of the system on which we carry out message passing. The proposed BP equalizer is shown to perform increasingly closer to optimal performance for increasing number of multipath components (MPC) at a much lesser complexity than that of the optimum equalizer. The proposed equalizer performs close to within 0.25 dB of SISO AWGN performance at 10-3 bit error rate on a severely delay-spread MIMO-ISI channel with 20 equal-energy MPCs. We point out that, although MIMO/UWB systems are characterized by fully/densely connected graphical models, the following two proposed features are instrumental in achieving near-optimal performance for large number of MPCs at low complexities: i) use of pairwise compatibility functions in densely connected MRFs, and ii) use of damping of messages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider low-complexity turbo equalization for multiple-input multiple-output (MIMO) cyclic prefixed single carrier (CPSC) systems in MIMO inter-symbol interference (ISI) channels characterized by large delay spreads. A low-complexity graph based equalization is carried out in the frequency domain. Because of the reduction in correlation among the noise samples that happens for large frame sizes and delay spreads in frequency domain processing, improved performance compared to time domain processing is shown to be achieved. This improved performance is attractive for equalization in severely delay spread ISI channels like ultrawideband channels and underwater acoustic channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop several novel signal detection algorithms for two-dimensional intersymbol-interference channels. The contribution of the paper is two-fold: (1) We extend the one-dimensional maximum a-posteriori (MAP) detection algorithm to operate over multiple rows and columns in an iterative manner. We study the performance vs. complexity trade-offs for various algorithmic options ranging from single row/column non-iterative detection to a multi-row/column iterative scheme and analyze the performance of the algorithm. (2) We develop a self-iterating 2-D linear minimum mean-squared based equalizer by extending the 1-D linear equalizer framework, and present an analysis of the algorithm. The iterative multi-row/column detector and the self-iterating equalizer are further connected together within a turbo framework. We analyze the combined 2-D iterative equalization and detection engine through analysis and simulations. The performance of the overall equalizer and detector is near MAP estimate with tractable complexity, and beats the Marrow Wolf detector by about at least 0.8 dB over certain 2-D ISI channels. The coded performance indicates about 8 dB of significant SNR gain over the uncoded 2-D equalizer-detector system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional magnetic recording (2-D TDMR) is an emerging technology that aims to achieve areal densities as high as 10 Tb/in(2) using sophisticated 2-D signal-processing algorithms. High areal densities are achieved by reducing the size of a bit to the order of the size of magnetic grains, resulting in severe 2-D intersymbol interference (ISI). Jitter noise due to irregular grain positions on the magnetic medium is more pronounced at these areal densities. Therefore, a viable read-channel architecture for TDMR requires 2-D signal-detection algorithms that can mitigate 2-D ISI and combat noise comprising jitter and electronic components. Partial response maximum likelihood (PRML) detection scheme allows controlled ISI as seen by the detector. With the controlled and reduced span of 2-D ISI, the PRML scheme overcomes practical difficulties such as Nyquist rate signaling required for full response 2-D equalization. As in the case of 1-D magnetic recording, jitter noise can be handled using a data-dependent noise-prediction (DDNP) filter bank within a 2-D signal-detection engine. The contributions of this paper are threefold: 1) we empirically study the jitter noise characteristics in TDMR as a function of grain density using a Voronoi-based granular media model; 2) we develop a 2-D DDNP algorithm to handle the media noise seen in TDMR; and 3) we also develop techniques to design 2-D separable and nonseparable targets for generalized partial response equalization for TDMR. This can be used along with a 2-D signal-detection algorithm. The DDNP algorithm is observed to give a 2.5 dB gain in SNR over uncoded data compared with the noise predictive maximum likelihood detection for the same choice of channel model parameters to achieve a channel bit density of 1.3 Tb/in(2) with media grain center-to-center distance of 10 nm. The DDNP algorithm is observed to give similar to 10% gain in areal density near 5 grains/bit. The proposed signal-processing framework can broadly scale to various TDMR realizations and areal density points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Any waterway with one end closed and the other open is generally called a blind channel. The main flow tends to expand, separate, and cause circulation at the mouth of blind channels. The main flow continuously transfers momentum and sediment into the circulation region through the turbulent mixing region (TMR) between them, thus leading to a large amount of sediment deposition in the blind channels. This paper experimentally investigated the properties of the water flow and sediment diffusion in TMR, demonstrating that both water flow and sediment motion in TMR approximately coincide with a similar structure as in the free mixing layer induced by a jet. The similarity functions of flow velocity and sediment concentration are then assumed, based on observation, and the resulting calculation of these functions is substantially facilitated. For the kind of low velocity flow system of blind channels with a finite width, a simple formula for the sediment deposition rate in blind channels is established by analyzing the gradient of crosswise velocity and sediment concentration in TMR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of blind multiuser detection. We adopt a Bayesian approach where unknown parameters are considered random and integrated out. Computing the maximum a posteriori estimate of the input data sequence requires solving a combinatorial optimization problem. We propose here to apply the Cross-Entropy method recently introduced by Rubinstein. The performance of cross-entropy is compared to Markov chain Monte Carlo. For similar Bit Error Rate performance, we demonstrate that Cross-Entropy outperforms a generic Markov chain Monte Carlo method in terms of operation time.