206 resultados para BISPHENOL
Resumo:
Neste trabalho foram investigados os comportamentos térmico e mecânico e as características morfológicas de amostras de policarbonato de bisfenol-A (PC) com cristalinidade induzida por exposição ao vapor de solvente. A técnica de indução de cristalização foi empregada em três amostras de policarbonato de bisfenol-A de diferentes massas molares. Filmes vazados a partir de soluções de PC em clorofórmio e amostras moldadas por compressão foram expostos a um ambiente contendo vapor de acetona. Os filmes foram expostos por diferentes períodos de tempo e analisados em equipamentos de Calorimetria Diferencial de Varredura, Microscopia Óptica com luz polarizada e Espectroscopia na Região do Infravermelho com Transformada de Fourier, para caracterizar a indução de cristalinidade. A indução de cristalinidade foi confirmada e a fase cristalina apresentou estrutura esferulítica. As amostras de maior massa molar mostraram maior teor de cristalinidade. O desempenho mecânico das amostras cristalinas de policarbonato mostrou diferenças, com a mudança de seu comportamento mecânico de dúctil para frágil, independente da massa molar
Resumo:
256 p.
Resumo:
Os desreguladores endócrinos são compostos micropoluentes de ação deletéria que causam efeitos aos animais e aos seres humanos. Estes vêm trazendo a várias décadas, problemas relacionados à má formação ou ainda infertilidade de várias espécies. A presença destes compostos na ordem de ng L-1 já é capaz de gerar efeitos nocivos ao sistema endócrino. Este trabalho visou à determinação da presença e quantidade de alguns destes compostos como 17α-etinilestradiol, bisfenol A e estrona entre outros, nas águas do rio Arroio Fundo, localizado em Jacarepaguá no RJ que possui um índice de qualidade de água ruim. A primeira etapa deste trabalho foi a implementação e validação de metodologia para determinação do 17α-etinilestradiol por cromatografia líquida acoplada a detector de fluorescência onde foram estabelecido limite de detecção, de quantificação e linearidade conforme orientação do Inmetro (2010). Além da avaliação das amostras ambientais através da metodologia estabelecida. Na etapa subsequente foram realizados os experimentos relativos à determinação dos desreguladores endócrinos através da espectrometria de massas por detector tipo tandem quadrupolo, onde também foram realizados os procedimentos de validação e determinação dos compostos bisfenol A e estrona que não foram suscetíveis a efeito de matriz durante a ionização, que acabou impedindo a determinação de outros desreguladores endócrinos. Os resultados indicam que não há redução da presença dos desreguladores endócrinos detectados, e de outros compostos orgânicos também detectados, mas não identificados, entre os pontos a montante e a jusante da Unidade de Tratamento do Rio Arroio Fundo. Todavia em função do grande efeito de matriz oriundo do fato da amostra ser de extrema complexidade, não foi possível realizar uma identificação e quantificação de todos os compostos alvos.
Resumo:
The seasonal variations of estrogenic compounds and the estrogenicities of influent and effluent were investigated by OF chemical analysis and in vitro assay in a municipal sewage treatment plant in Wuhan (China). The levels of eight estrogenic compounds, including 17 beta-estradiol (E-2) estrone (E-1), estriol (E-3) diethylstilbestrol (DES), 17 alpha-ethinylestradiol, nonylphenol (NP), 4-tert-octylphenol (OP), and bisphenol A (BPA), were measured by gas chromatography-mass spectrometry. Total estrogenic activity of sewage was quantitatively assessed using primary cultured hepatocytes of male Megalobrama amblycephala Yih using vitellogenin as a biomarker. The E-2 equivalents (EEQs) obtained from the chemical analysis were consistent with those measured by bioassay. The natural (E-1, E-2, and E-3) and synthetic (DES) estrogens, as well as NP, were the main contributors of the total EEQs of influent and effluent in the present study. The levels of natural estrogens E-1 and E-3 in the influent and effluent were higher in winter than in summer, whereas the situation for NP and OP was the reverse. The levels of E-2, DES, and BPA varied little among different seasons. 17 alpha-Ethinylestradiol was not detected in the influent and effluent. The estrogenicities of the influent and of the primary and secondary effluents were all higher in summer than in winter. Estrogenic activities in winter mainly originated from natural (E-1, E-2, and E-3) and synthetic (DES) estrogens, whereas the increase of EEQs in summer was contributed by NP The results from chemical analysis and bioassay demonstrate that estrogenic compounds cannot be entirely removed by the existing sewage treatment process, which should be further improved to protect aquatic ecosystems and human health.
Resumo:
A simple, rapid and sensitive on-line method for simultaneous determination of four endocrine disruptors (17 beta-estradiol, estriol, bisphenol A and 17 alpha-ethinylestradiol) in environmental waters was developed by coupling in-tube solid-phase microextraction (SPME) to high-performance liquid chromatography (HPLC) with fluorescence detection (FLD). A poly(acrylamide-vinylpyridine-NAP-methylene bisacrylamide) monolith, synthesized inside a polyether ether ketone (PEEK) tube, was selected as the extraction medium. To achieve optimum extraction performance, several parameters were investigated, including extraction flow-rate, extraction time, and pH value, inorganic salt and organic solvent content of the sample matrix. By simply filtered with nylon membrane filter and adjusting the pH of samples to 6.0 with phosphoric acid, the sample solution then could be directly injected into the device for extraction. Low detection limits (S/N = 3) and quantification limits (S/N = 10) of the proposed method were achieved in the range of 0.006-0.10 ng/mL and 0.02-0.35 ng/mL from spiked lake waters, respectively. The calibration curves of four endocrine disruptors showed good linearity ranging from quantification limits to 50 ng/mL with a linear coefficient R-2 value above 0.9913. Good method reproducibility was also found by intra- and inter-day precisions, yielding the RSDs less than 12 and 9.8%, respectively. Finally, the proposed method was successfully applied to the determination of these compounds in several environmental waters. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A new bisphenol monomer, 2,2'-dimethylaminemetllylene-4,4'-biphenol (DABP), was easily prepared by Mannich reaction of dimethylamine and formaldehyde with 4,4'-biphenol. Novel partially fluorinated poly(arylene ether sulfone)s with pendant quaternary ammonium groups were prepared by copolymerization of DABP, 4,4'-biphenol, and 3,3',4,4'- tetrafluorodiphenylsulfone, followed by reaction with iodomethane. The resulting copolymers PSQNI-x (where x represents the molar fraction of DABP in the feed) with high molecular weight exhibited outstanding solubility in polar aprotic solvents; thus, the flexible and tough membranes of PSQNI-x with varying ionic content could be prepared by casting from the DMAc solution. Novel anion exchange membranes, PSQNOH-x, were obtained by an anion exchange of PSQNI-x with 1 N NaOH.
Resumo:
Bisphenol monomer 4-carboxylphenyl hydroquinone (4C-PH) containing carboxyl groups was synthesized by diazotization reaction of p-aminobenzoic acid and 1,4-benzoquinone and subsequent reductive reaction. Copolymerization of bisphenol A, 4C-PH, sodium 5,5'-carbonylbis(2-fluorobenzene-sulfonate) and 4,4'-difluorobenzophenone at various molar ratios through aromatic nucleophilic substitution reaction resulted in a new sulfonated poly(ether ether ketone) containing pendant carboxyl groups (C-SPEEK). The structures of the monomer 4C-PH and copolymers were confirmed by FT-IR and H-1 NMR. Flexible and transparent membranes with sulfonic and carboxylic acid groups as the proton conducting sites were prepared. The dependence of ion-exchange capacity (IEC), water uptake, proton conductivity and methanol permeability on the degree of sulfonation has been studied.
Resumo:
Novel bisphenol monomers (1a-d) containing phthalimide groups were synthesized by the reaction of phenolphthalein with ammonia, methylamine, aniline, and 4-tert-butylanilne, respectively. A series of cardo poly (arylene ether sulfone)s was synthesized via aromatic nucleophilic substitution of 1a-d with dichlorodiphenylsulfone, and characterized in terms of thermal, mechanical and gas transport properties to H-2, O-2, N-2, and CO2. The polymers showed high glass transition temperature in the range 230-296 degrees C, good solubility in polar solvents as well as excellent thermal stability with 5% weight loss above 410 degrees C. The most permeable membrane studied showed permeability coefficients of 1.78 barrers to O-2 and 13.80 barrers to CO2, with ideal selectivity. factors of 4.24 for O-2/N-2 pair and 28.75 for CO2/CH4 pair. Furthermore, the structure-property relationship among these cardo poly(arylene ether sulfone)s had been discussed on solubility, thermal stability, mechanical, and gas permeation properties. The results indicated that introducing 4-tert-butylphenyl group improved the gas permeability of polymers evidently.
Resumo:
Phase separation of bisphenol A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) thin blend film is suppressed by addition of solid epoxy oligomer. Epoxy has strong intermolecular interactions with both PC and PMMA, while PC and PMMA are quite incompatible with each other. Consequently, phase separation in the PC/PMMA blend film pushes epoxy to the interface; at the same time, PC and epoxy react readily at the interface to form a cross-linking structure, binding PMMA chains together. Therefore, the interface between PC and PMMA is effectively reinforced, and the PC/PMMA thin blend film is stabilized against phase separation. On the other hand, only an optimal content of epoxy (i.e., 10 wt %) can serve as an efficient interfacial agent. In contrast to the traditional reactive compatibilization, here we observed that the cross-linking structure along the interface is much more stable than block or graft copolymers. Atomic force microscopy (AFM) is used to characterize the morphological changes of the blend films as a function of annealing time. Two-dimensional fast Fourier transform (2D-FFT) of AFM data allows quantitative investigation of the scaling behavior of phase separation kinetics.
Resumo:
Properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were significantly modified by a hydrogen bonding (H-bond) monomer-bisphenol A (BPA). BPA lowered the T-m of PHBV and widened the heat-processing window of PHBV. At the same time, a dynamic H-bond network in the blends was observed indicating that BPA acted as a physical cross-link agent. BPA enhanced the T, of PHBV and reduced the crystallization rate of PHBV. It resulted in larger crystallites in PHBV/BPA blends showed by WAXD. However, the crystallinity of PHBV was hardly reduced. SAXS results suggested that BPA molecules distributed in the inter-lamellar region of PHBV. Finally, a desired tension property was obtained, which had an elongation at break of 370% and a yield stress of 16 MPa. By comparing the tension properties of PHBV/BPA and PHBV/tert-butyl phenol blends, it was concluded that the H-bond network is essential to the improvement of ductility.
Microwave-assisted synthesis of high-molecular-weight poly(ether imide)s by phase-transfer catalysis
Resumo:
A facile and rapid polycondensation reaction of disodium bisphenol A with bis(chlorophthalimide)s was preformed with a domestic microwave oven in o-dichlorobenzene by phase-transfer catalysis. The polymerization reactions, in comparison with conventional heating polycondensation, proceeded rapidly and were completed within 25 min. The polymerizations gave the corresponding poly(ether imide)s with inherent viscosities of 0.55-0.92 dL g(-1). The effects of various factors on the polymerization, such as the amount of the catalyst, the reaction time, and the microwave power were studied. The properties of the polymers were briefly characterized.
Resumo:
Bisphenol A solid epoxy serves as an effective reaction compatibilizer to the bisphenol A polycarbonate (PC)/PMMA bilayer systems. Addition of epoxy to the bottom PMMA layer can retard or even prevent the dewetting of PC films by introducing crosslinking between both components at the interface. This is the first investigation of polymer bilayers stabilized by chemical reactions.
Resumo:
A series of acrylonitrile-butadiene-styrene (ABS) with different rubber content were prepared by diluting ABS grafting copolymer containing 60% rubber with a styrene-acrylonitrile copolymer. ABS prepared were blended with bisphenol-A-polycarbonate (PC) at the ratio of 70/30, 50/50, and 30/70 to prepare PC/ABS blends. Influence of rubber content in ABS on the properties of ABS and PC/ABS blends were investigated. PC/ABS blends with different compositions got good toughness when the rubber in ABS increased to the level that ABS itself got good toughness. The tensile properties and processability of PC/ABS blends decreased with the increase of the total rubber content introduced into the blends. ABS with the rubber content of 30 wt% is most suitable to be used to prepare PC/ABS blends. The rubber content in ABS affected the viscosity of ABS, and subsequently the viscosity ratio of PC to ABS. As a result, the morphology of PC/ABS blends varied. The increase of rubber content in ABS results in finer structure of PC/ABS blends.
Resumo:
Polyetherimides and copolymers have been synthesized in one pot from bis(chlorophthalimide), dichlorodiphenylsulfone, and bisphenolate using diphenylsulfone as the solvent. The inherent viscosities of the obtained polyimides are in the range of 0.32-0.72 dL/g, and the structures of polyimides were confirmed by IR and elemental analyses. All of the polyimides have good solubility in common organic solvents. The 5% weight-loss temperatures of the polyimides were 429-507 C in air. The glass transition temperatures (T3) of 4,4'-(9-fluorenylidene) diphenol-based polyimides are in the range of 253-268 degrees C. The Tg of bisphenol A-based polyimides is in the range of 198204 degrees C, while the T-g change inconspicuously when the ratios of diphenylsulfone increase. The wide-angle X-ray diffraction showed that all polyimides prepared are amorphous.
Resumo:
Nylon 6/poly(acrylonitrile-butadiene-styrene)(ABS) blends were prepared in the molten state by a twin-screw extruder. Maleic anhydride-grafted polypropylene (MAP) and solid epoxy resin (bisphenol type-A) were used as compatibilizers for these blends. The effects of compatibilizer addition to the blends were studied via tensile, torque, impact properties and morphology tests. The results showed that the additions of epoxy and MA copolymer to nylon 6/ABS blends enhanced the compatibility between nylon 6 and ABS, and this lead to improvement of mechanical properties of their blends and in a size decrease of the ABS domains.