815 resultados para BISMUTH IODIDES
Resumo:
The stimulated emission cross section σp for the 1060 nm transition of Nd3+ in lead borate and bismuth borate glasses has been determined from fluorescence measurements. The compositional dependence of σp, which has been evaluated using radiative transition probability, refractive index of the host glass, effective fluorescence linewidth, and position of the band, with PbO/Bi2O3 content is investigated. The σp values of the 1060 nm band of Nd3+ for lead borate and bismuth borate glasses are found to be in the range 2.6–5.7×10−20 cm2 at 298 K and 3.0–6.3×10−20 cm2 at 4.2 K. The σp values are comparatively large suggesting the possible utilization of these materials in laser applications.
Resumo:
The 2p 6d feature in the Bi L3 spectra has different energies in the semiconducting (0.0≤x<0.7) and the superconducting (x=0.75) compositions of BaBi1−xPbxO3. The Bi 4f core level spectrum shows distinct features ascribable to Bi III and Bi V in BaBiO3 and in the semiconducting compositions; the width of the 4f peaks is also considerably larger in these compositions compared to that in BaBi0.25Pb0.75O3, which shows a single sharp Bi 4f feature.
Resumo:
Semiconducting chalcogenide glasses in the systems GeSe and GeSeTe with the addition of bismuth show unusual phenomena of p - to - n transition. Samples for characterization were prepared in bulk form by melt-quenching technique, with increasing Bi at. % to replace selenium. Photoluminescence (PL) spectroscopic studies on all the samples were carried out at 4.2K using an Ar-Ion laser for illuminating the samples. The laser power used was 200mw. Both the systems show a decrease in the intensity of PL signal with increasing Bi content. This interesting behavior is discussed on the basis of a charged defect model for chalcogenide glasses, proposed by Mott, Davis and Street (MDS). The effect of bismuth addition on these charged defects is also discussed to explain the carrier type reversal.
Resumo:
Silicon nanowires (NWs) have been grown in the vapor phase for the first time with bismuth (Bi) as a catalyst using the electron beam evaporation method at a low substrate temperature of 280 degrees C. The grown Si nanowires were randomly oriented on the substrate with an average length of 900 nm for a deposition time of 15 min. Bi faceted nanoparticles (crowned) at the end of the grown Si nanowires have been observed and attributed to the Vapor-Liquid-Solid (VLS) growth mechanism. Transmission Electron Microscopy analysis on the nanowires revealed their single crystalline nature and interestingly bismuth particles were observed in Si nanowires. The obtained results have shown a new window for Si nanowires growth with bismuth as a catalyst. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Lead Telluride (PbTe) with bismuth secondary phase embedded in the bulk has been prepared by matrix encapsulation technique. X-Ray Diffraction results indicated crystalline PbTe, while Rietveld analysis showed that Bi did not substitute at either Pb or Te site, which was further confirmed by Raman and X-Ray Photoelectron Spectroscopy. Scanning Electron Microscopy showed the expected presence of a secondary phase, while Energy Dispersive Spectroscopy results showed a slight deficiency of tellurium in the PbTe matrix, which might have occurred during synthesis due to higher vapor pressure of Te. Transmission Electron Microscopy results did not show any nanometer sized Bi phase. Seebeck coefficient (S) and electrical conductivity (sigma) were measured from room temperature to 725 K. A decrease in S and sigma with increasing Bi content showed an increased scattering of electrons from PbTe-Bi interfaces, along with a possible electron acceptor role of Bi secondary phase. An overall decrease in the power factor was thus observed. Thermal conductivity, measured from 400K to 725K, was smaller at starting temperature with increasing Bi concentration, and almost comparable to that of PbTe at higher temperatures, indicating a more important role of electrons as compared to phonons at PbTe-Bi interfaces. Still, a reasonable zT of 0.8 at 725K was achieved for undoped PbTe, but no improvement was found for bismuth added samples with micrometer inclusions. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4796148]
Resumo:
Three new compounds of bismuth, C4N2H10]center dotBi(C7H4NO4)(C7H3NO4)]center dot H2O, I, Bi(C5H3N2O4) (C5H2N2O4)], II, and Bi(mu(2)-OH)(C7H3NO4)], III, have been prepared by the reaction between bismuth nitrate and heterocyclic aromatic dicarboxylic acids, 2,6-pyridinedicarboxylic acid, 4,5-imidazoledicarboxylic acid, and 3,4-pyridinedicarboxylic acid, respectively, under hydrothermal conditions. The structures of all the compounds have linkages between Bi2O2 and the corresponding dicarboxylate forming a simple molecular unit in I, a bilayer arrangement in II, and a three-dimensional extended structure in III. The topological arrangement of the nodal building units in the structures indicates that a brucite-related layer (II) and fluorite-related arrangement (III) can be realized in these structures. By utilizing the secondary interactions, one can correlate the structure of III to a Kagome-related one. The observation of such classical inorganic related structures in the bismuth carboxylates is noteworthy. Lewis acid catalytic studies on the formation of ketal suggest the possible participatory role of the lone pair of electrons. All the compounds are characterized employing elemental analysis, IR, UV-vis, and thermal studies.
Resumo:
Mechanism of ion transport in glasses continues to be incompletely understood. Several of the theoretical models in vogue fail to rationalize conductivity behaviour when d.c. and a.c. measurements are considered together. While they seem to involve the presence of at least two components in d.c. activation energy, experiments fail to reveal that feature. Further, only minor importance is given to the influence of structure of the glass on the ionic conductivity behaviour. In this paper, we have examined several general aspects of ion transport taking the example of ionically conducting glasses in pseudo binary, yNa(2)B(4)O(7)center dot(1-y) M (a) O (b) (with y = 0 center dot 25-0 center dot 79 and M (a) O (b) = PbO, TeO2 and Bi2O3) system of glasses which have also been recently characterized. Ion transport in them has been studied in detail. We have proposed that non-bridging oxygen (NBO) participation is crucial to the understanding of the observed conductivity behaviour. NBO-BO switching is projected as the first important step in ion transport and alkali ion jump is a subsequent event with a characteristically lower barrier which is, therefore, not observed in any study. All important observations in d.c. and a.c. transport in glasses are found consistent with this model.
Correlations between mechanical and photoluminescence properties in Eu doped sodium bismuth titanate
Resumo:
Nanoindentation technique is utilized to examine mechanical property variation in Eu doped Na0.5Bi0.5 TiO3 (NBT). Doping levels of Eu in NBT is systematically varied. Dilute doping results in a linear reduction in both modulus and hardness. At higher concentrations, a recovery of the mechanical properties (to undoped NBT values) is observed. These experimental trends mirror variations in the optical emission intensities with Eu concentration. Observed trends are rationalized on the basis of a model, which hypothesizes phase segregation beyond a critical Eu doping level. Such segregation leads to the formation of pure NBT, nano-Eu saturated NBT, and nano-mixed Eu oxides in the microstructure. Pure NBT is optically inactive, while saturated Eu:NBT is a much better emitter when compared to europium oxide. Hence beyond the critical concentration, luminescence signal comes primarily from the saturated Eu:NBT phase. The model presented is supported by nanoindentation, and spectroscopic results. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Transparent glasses in CaO-Bi2O3-B2O3 system were fabricated via the conventional melt-quenching technique. X-ray powder diffraction (XRD) and differential thermal analysis (DTA) carried out on the as-quenched samples confirmed their amorphous and glassy nature respectively. The surface crystallization behaviour of these glasses with and without ultrasonic surface treatment (UST) was monitored using XRD, optical microscopy and scanning electron microscopy (SEM). The volume fraction, depth of crystallization and the (001) orientation factor for the heat treated samples with and without UST were compared. The ultrasonically-treated samples on subsequent heat treatment were found to crystallize at lower temperatures associated with the highest degree of orientation factor (0.95) in contrast with those of non-UST samples. These surface crystallized glasses were found to exhibit nonlinear optical behaviour emitting green light (532 nm) when they were exposed to the infrared radiation (1064 nm) using Nd:YAG laser.
Resumo:
We present the application of a bismuth modified exfoliated graphite electrode in the detection of arsenic in water. Bismuth film was electrodeposited onto an exfoliated graphite (EG) electrode at a potential of -600 mV. The modification of EG resulted in an increase in the electroactive surface area of the electrode and consequently peak current enhancement in Ru(NH3)(6)(2+/13+) redox probe. Square wave anodic stripping voltammetry was performed with the modified electrode (EG-Bi) in As (III) solutions at the optimum conditions of pH 6, deposition potential of -600 mV and pre-concentration time of 180s. The EG-Bi was able to detect As (III) to the limit of 5 mu g L-1 and was not susceptible to many interfering cations except Cu (II). The EG-Bi is low cost and easy to prepare. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
One new homoleptic Bi(dtc)(3)] (1) (dtc = 4-hydroxypiperdine dithiocarbamate) has been synthesized and characterized by microanalysis, IR, UV-Vis, H-1 and C-13 spectroscopy and X-ray crystallography. The photoluminescence spectrum for the compound in DMSO solution was recorded. The crystal structure of 1 displayed distorted octahedral geometry around the Bi(III) center bonded through sulfur atoms of the dithiocarbamate ligands. TGA indicates that the compound decomposes to a Bi and Bi-S phase system. The Bi and Bi-S obtained from decomposition of the compound have been characterized by pXRD, EDAX and SEM. Solvothermal decomposition of 1 in the absence and presence of two different capping agents yielded three morphologically different Bi2S3 systems which were deployed as counter-electrode in dye-sensitized solar cells (DSSCs). (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The Schottky barrier heights of various metals on the high permitivity oxides tantalum pentoxide, barium strontium titanate, lead zirconate titanate, and strontium bismuth tantalate have been calculated as a function of the metal work function. It is found that these oxides have a dimensionless Schottky barrier pinning factor S of 0.28-0.4 and not close to 1 because S is controlled by Ti-O-type bonds not Sr-O-type bonds, as assumed in earlier work. The band offsets on silicon are asymmetric with a much smaller offset at the conduction band, so that Ta2O5 and barium strontium titanate are relatively poor barriers to electrons on Si. © 1999 American Institute of Physics.
Resumo:
Schottky barrier heights of various metals on tantalum pentoxide, barium strontium titanate, lead zirconate-titanate and strontium bismuth tantalate have been calculated as a function of metal work function. These oxides have a dimensionless Schottky barrier pinning factor, S, of 0.28 - 0.4 and not close to 1, because S is controlled by the Ti-O type bonds not Sr-O type bonds, as assumed previously. Band offsets on silicon are asymmetric with much smaller offset at the conduction band, so that Ta2O5 and barium strontium titanate (BST) are relatively poor barriers to electrons on Si.