976 resultados para BENJAMIN-ONO-EQUATION
Resumo:
In this paper we investigate the construction of state models for link invariants using representations of the braid group obtained from various gauge choices for a solution of the trigonometric Yang-Baxter equation. Our results show that it is possible to obtain invariants of regular isotopy (as defined by Kauffman) which may not be ambient isotopic. We illustrate our results with explicit computations using solutions of the trigonometric Yang-Baxter equation associated with the one-parameter family of minimal typical representations of the quantum superalgebra U-q,[gl(2/1)]. We have implemented MATHEMATICA code to evaluate the invariants for all prime knots up to 10 crossings.
Resumo:
Esta dissertação apresenta o resultado de uma pesquisa, de cunho teórico, cujo escopo é apreender, na obra fílmica de Wim Wenders, o percurso estético narrativo que esse cineasta faz, tendo como eixo central de discussão o conceito de memória e experiência. As perguntas que norteiam a pesquisa são: de que forma a estética fílmica dos filmes de Wenders elabora a memória e como esta está vinculada à ideia de experiência? De que forma o fazer fílmico desse cineasta pode ser uma referência e estímulo para o âmbito da educação, em especial para a formação dos sentidos? A pesquisa propõe uma tríade dialógica entre cinema, filosofia e educação. Para tanto, traça um panorama sobre a estética de alguns filmes de Wenders em diálogo com a filosofia ensaística de Walter Benjamin. O principal objeto de análise é o filme Alice nas cidades (WENDERS, 1973). Com isso, pretende-se estabelecer um diálogo e traçar um paralelo (relação) entre os conceitos de experiência e memória, presentes na estética fílmica de Wenders, e o conceito de memória e experiência tal como apresentada em alguns ensaios benjaminianos. A hipótese principal considera que a memória coletiva e a experiência fazem par e caminham com a história da educação, e são elementos fundamentais para a formação dos sentidos. A compreensão desses dois conceitos, a partir de uma perspectiva crítica, pode ensejar uma experiência e formação estética que produzem as condições de possibilidade para a contraposição à barbárie que conduz à pobreza da experiência, também entendida como regressão dos sentidos. A segunda hipótese é de que o conceito de memória e experiência no cinema de Wim Wenders expressa uma estética comprometida na construção de uma expressão artística que dirige a atenção à ressurgência do passado no presente, isto é, evidências da experiência e da memória na linguagem cinematográfica. O esforço da pesquisa pode ser resumido na tentativa de um exercício de análise e discussão teórica em torno da relação entre educação e cinema. Para tanto, apontam-se, por meio da obra cinematográfica de Wenders, evidências de aproximação com o pensamento de Benjamin, em especial com relação aos conceitos de memória e experiência, tal como se apresenta no percurso criativo do cineasta. Tais conceitos contribuem, por meio da obra de Wenders, em diálogo com a filosofia de Benjamin, para produzirem um contraponto à educação estética na formação do professor.
Resumo:
We discuss existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear ordinary differential equation-(u' / root 1 - u'(2))' = f(t, u). Depending on the behaviour of f = f(t, s) near s = 0, we prove the existence of either one, or two, or three, or infinitely many positive solutions. In general, the positivity of f is not required. All results are obtained by reduction to an equivalent non-singular problem to which variational or topological methods apply in a classical fashion.
Resumo:
We present a new dynamical approach to the Blumberg's equation, a family of unimodal maps. These maps are proportional to Beta(p, q) probability densities functions. Using the symmetry of the Beta(p, q) distribution and symbolic dynamics techniques, a new concept of mirror symmetry is defined for this family of maps. The kneading theory is used to analyze the effect of such symmetry in the presented models. The main result proves that two mirror symmetric unimodal maps have the same topological entropy. Different population dynamics regimes are identified, when the intrinsic growth rate is modified: extinctions, stabilities, bifurcations, chaos and Allee effect. To illustrate our results, we present a numerical analysis, where are demonstrated: monotonicity of the topological entropy with the variation of the intrinsic growth rate, existence of isentropic sets in the parameters space and mirror symmetry.
Resumo:
: In this work we derive an analytical solution given by Bessel series to the transient and one-dimensional (1D) bioheat transfer equation in a multi-layer region with spatially dependent heat sources. Each region represents an independent biological tissue characterized by temperature-invariant physiological parameters and a linearly temperature dependent metabolic heat generation. Moreover, 1D Cartesian, cylindrical or spherical coordinates are used to define the geometry and temperature boundary conditions of first, second and third kinds are assumed at the inner and outer surfaces. We present two examples of clinical applications for the developed solution. In the first one, we investigate two different heat source terms to simulate the heating in a tumor and its surrounding tissue, induced during a magnetic fluid hyperthermia technique used for cancer treatment. To obtain an accurate analytical solution, we determine the error associated with the truncated Bessel series that defines the transient solution. In the second application, we explore the potential of this model to study the effect of different environmental conditions in a multi-layered human head model (brain, bone and scalp). The convective heat transfer effect of a large blood vessel located inside the brain is also investigated. The results are further compared with a numerical solution obtained by the Finite Element Method and computed with COMSOL Multi-physics v4.1 (c). (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The aim of the present study was to test a hypothetical model to examine if dispositional optimism exerts a moderating or a mediating effect between personality traits and quality of life, in Portuguese patients with chronic diseases. A sample of 540 patients was recruited from central hospitals in various districts of Portugal. All patients completed self-reported questionnaires assessing socio-demographic and clinical variables, personality, dispositional optimism, and quality of life. Structural equation modeling (SEM) was used to analyze the moderating and mediating effects. Results suggest that dispositional optimism exerts a mediator rather than a moderator role between personality traits and quality of life, suggesting that “the expectation that good things will happen” contributes to a better general well-being and better mental functioning.
Resumo:
Benjamin Franklin (1706-1790) foi jornalista, cientista, inventor, homem de estado e diplomata. (...) Benjamin Franklin era um entusiasta de quadrados mágicos. Chegou mesmo a criar os seus próprios quadrados. O mais conhecido é o quadrado 8 por 8 apresentado na imagem. Numa carta publicada em 1769, Franklin refere: "Na minha juventude, divertia-me a construir quadrados mágicos, de modo a que a soma dos números de cada linha, de cada coluna e de cada uma das duas diagonais principais fosse sempre a mesma; com o passar do tempo, conseguia criar quadrados mágicos, de tamanho razoável, tão depressa quanto conseguia escrever os números nas suas linhas e colunas; mas, por não estar totalmente satisfeito com estes quadrados, que eram demasiado fáceis, impus a mim mesmo o desafio de construir outro tipo de quadrados mágicos, que apresentassem propriedades mais ricas e que constituíssem, assim, um maior estímulo à curiosidade." Em relação ao quadrado mágico da imagem, são utilizados todos os números naturais, do 1 ao 8x8=64, uma e uma só vez. Além disso, a soma dos números de cada linha e de cada coluna é sempre igual a 260, a constante mágica. Existem muitas outras formas de obter o valor 260 (...)
Resumo:
We perform a comparison between the fractional iteration and decomposition methods applied to the wave equation on Cantor set. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.
Resumo:
We prove existence, uniqueness, and stability of solutions of the prescribed curvature problem (u'/root 1 + u'(2))' = au - b/root 1 + u'(2) in [0, 1], u'(0) = u(1) = 0, for any given a > 0 and b > 0. We also develop a linear monotone iterative scheme for approximating the solution. This equation has been proposed as a model of the corneal shape in the recent paper (Okrasinski and Plociniczak in Nonlinear Anal., Real World Appl. 13:1498-1505, 2012), where a simplified version obtained by partial linearization has been investigated.
Resumo:
We prove existence, uniqueness, and stability of solutions of the prescribed curvature problem (u'/root 1 + u'(2))' = au - b/root 1 + u'(2) in [0, 1], u'(0) = u(1) = 0, for any given a > 0 and b > 0. We also develop a linear monotone iterative scheme for approximating the solution. This equation has been proposed as a model of the corneal shape in the recent paper (Okrasinski and Plociniczak in Nonlinear Anal., Real World Appl. 13:1498-1505, 2012), where a simplified version obtained by partial linearization has been investigated.
Resumo:
We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to the behaviour off = f (r, s) near s = 0, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.
Resumo:
An improved class of Boussinesq systems of an arbitrary order using a wave surface elevation and velocity potential formulation is derived. Dissipative effects and wave generation due to a time-dependent varying seabed are included. Thus, high-order source functions are considered. For the reduction of the system order and maintenance of some dispersive characteristics of the higher-order models, an extra O(mu 2n+2) term (n ??? N) is included in the velocity potential expansion. We introduce a nonlocal continuous/discontinuous Galerkin FEM with inner penalty terms to calculate the numerical solutions of the improved fourth-order models. The discretization of the spatial variables is made using continuous P2 Lagrange elements. A predictor-corrector scheme with an initialization given by an explicit RungeKutta method is also used for the time-variable integration. Moreover, a CFL-type condition is deduced for the linear problem with a constant bathymetry. To demonstrate the applicability of the model, we considered several test cases. Improved stability is achieved.
Resumo:
In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.
Resumo:
The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.