168 resultados para BAKING
Resumo:
In this study, an attempt has been made to gather enough information regarding lactic acid bacteria from fish and shellfish of tropical regions. The occurrence and distribution of lactic acid bacteria in fresh and frozen marine fish and shellfish, farmed fish and shellfish, cured and pickled fish and shellfish have been investigated. Lactic Acid Bacteria (LAB) have for centuries been responsible for the fermentative preservation of many foods. They are used to retard spoilage and preserve foods through natural fermentations. They have found commercial applications as starter cultures in the dairy, baking, meat, fish, and vegetable and alcoholic beverage industries. They are industrially important organisms recognized for their fermentative ability as well as their nutritional benefits. These organisms produce various compounds such as organic acids, diacetyl, hydrogen peroxide and bacteriocins or bactericidal proteins during lactic fermentations.Biopreservation of foods using bacteriocin producing LAB cultures is becoming widely used. The antimicrobial effect of bacteriocins and other compounds produced during fermentation of carbohydrates are well known to inhibit the growth of certain food spoiling bacteria as well as a limited group of food poisoning and pathogenic bacteria LAB like Lactobacillus plantarum are widely used as starter cultures for the Production of fish ensilage. The present study is the first quantitative and qualitative study on the occurrence and distribution of lactic acid bacteria in fresh and frozen fish and prawn. It is concluded that Lactobacillus plantaruni was the predominant lactobacillus species in fresh and frozen fish and shellfish. The ability of selected Lactobacillus cultures to grow at low temperatures, high salt content, produce bacteriocins, rapidly ferment sugars and decrease the pH make them potential candidates for biopreservation of fish and shellfish.
Resumo:
Microbial enzymes are in great demand owing to their importance in several industries such as brewing, baking, leather, laundry detergent, dairy. starch processing and textiles besides pharmaceuticals. About 80% of the enzymes produced through fermentation and sold in the industrial scale are hydrolytic enzymes. Due to recognition of new and new applications, an intensive screening of different kinds of enzymes with novel properties, from various microorganisms, is being pursued all over the world. Bacillus sp are largely known to produce a-amylase, among the different groups of microoganisms, at industrial level. They are known to produce both saccharifying and liquefying a-amylases (Fukumoto 1963; walker and Campbell, 1967a). which are distinguishable by their mechanisms of starch degradation by the fact that the saccharifying asamylases produce an increase in reducing power about twice that of the liquefying enzyme (Fukumoto, 1963; Pazur and Okada, 1966). Under this circumstances, the present study was undertaken, with a View to utilise a fast growing B.coagu1ans isolated from soil, for production of thermostable and alkaline oz-amylase under different fermentation processes
Resumo:
Die thermische Verarbeitung von Lebensmitteln beeinflusst deren Qualität und ernährungsphysiologischen Eigenschaften. Im Haushalt ist die Überwachung der Temperatur innerhalb des Lebensmittels sehr schwierig. Zudem ist das Wissen über optimale Temperatur- und Zeitparameter für die verschiedenen Speisen oft unzureichend. Die optimale Steuerung der thermischen Zubereitung ist maßgeblich abhängig von der Art des Lebensmittels und der äußeren und inneren Temperatureinwirkung während des Garvorgangs. Das Ziel der Arbeiten war die Entwicklung eines automatischen Backofens, der in der Lage ist, die Art des Lebensmittels zu erkennen und die Temperatur im Inneren des Lebensmittels während des Backens zu errechnen. Die für die Temperaturberechnung benötigten Daten wurden mit mehreren Sensoren erfasst. Hierzu kam ein Infrarotthermometer, ein Infrarotabstandssensor, eine Kamera, ein Temperatursensor und ein Lambdasonde innerhalb des Ofens zum Einsatz. Ferner wurden eine Wägezelle, ein Strom- sowie Spannungs-Sensor und ein Temperatursensor außerhalb des Ofens genutzt. Die während der Aufheizphase aufgenommen Datensätze ermöglichten das Training mehrerer künstlicher neuronaler Netze, die die verschiedenen Lebensmittel in die entsprechenden Kategorien einordnen konnten, um so das optimale Backprogram auszuwählen. Zur Abschätzung der thermische Diffusivität der Nahrung, die von der Zusammensetzung (Kohlenhydrate, Fett, Protein, Wasser) abhängt, wurden mehrere künstliche neuronale Netze trainiert. Mit Ausnahme des Fettanteils der Lebensmittel konnten alle Komponenten durch verschiedene KNNs mit einem Maximum von 8 versteckten Neuronen ausreichend genau abgeschätzt werden um auf deren Grundlage die Temperatur im inneren des Lebensmittels zu berechnen. Die durchgeführte Arbeit zeigt, dass mit Hilfe verschiedenster Sensoren zur direkten beziehungsweise indirekten Messung der äußeren Eigenschaften der Lebensmittel sowie KNNs für die Kategorisierung und Abschätzung der Lebensmittelzusammensetzung die automatische Erkennung und Berechnung der inneren Temperatur von verschiedensten Lebensmitteln möglich ist.
Resumo:
Con el presente trabajo se pretende describir el plan estratégico internacional que siguió PAN PA’ YA! y HAMBURGUESAS EL CORRAL en el proceso de exportación de sus productos y formalización de la comercialización a nivel internacional, mediante la formación de alianzas entre empresas y distribuidores del mercado. Por medio de un estudio de las diferentes teorías de internacionalización se pudo identificar el proceso a través del cual las empresas colombianas iniciaron sus operaciones en el extranjero. PAN PA’ YA! empezó con el sueño de ser una de las panaderías más grandes en Colombia, hoy en día constituye un negocio integral. Con el paso de los años y el movimiento diario del mercado colombiano la empresa se ha consolidado fuertemente. La mayor parte del éxito es la novedad y el interés de abrirse a mercados satisfaciendo las necesidades de los clientes y siguiendo un modelo de internacionalización en las grandes cadenas, por medio de sus productos listos para calentar. De la misma manera HAMBURGUESAS EL CORRAL gracias al estilo original y único de su decoración, nació y sigue siendo reconocido y apreciado por clientes como una marca de tradición que ha buscado posicionarse con el lema “la receta original”, y ello ha resultado en un concepto casero y único, cuyo compromiso ha sido satisfacer los gustos, expectativas y necesidades de sus clientes con una excelente calidad buscando así un modelo de internacionalización que los consolide en el exterior. Finalmente el proceso de internacionalización que siguieron las empresas Colombianas, se caracteriza por ser un proceso por etapas donde muestran detalle a detalle sus inicios, como lograron la posición dentro del país y como se han establecido en el exterior. Realizando para ello una investigación de mercado adecuada con el objetivo de satisfacer las necesidades del cliente con estrategias de innovación e ideas originales y prácticas.
Resumo:
To establish its significance during commercial breadmaking, dityrosine formation was quantified in flours and doughs of six commercial wheat types at various stages of the Chorleywood Bread Process. Dityrosine was formed mainly during mixing and baking, at the levels of nmol/g dry weight. Good breadmaking flours tended to exhibit higher dityrosine content in the final bread than low quality ones, but no relationship was found for dityrosine as a proportion of flour protein content, indicating that the latter was still a dominant factor in the analysis. There was no correlation between gluten yield of the six wheat types and their typical dityrosine concentrations, suggesting that dityrosine crosslinks were not a determinant factor for gluten formation. Ascorbic acid was found to inhibit dityrosine formation during mixing and proving, and have no significant effect on dityrosine in the final bread. Hydrogen peroxide promoted dityrosine formation, which suggests a radical mechanism involving endogenous peroxidases might be the responsible for dityrosine formation during breadmaking.
Resumo:
The rheological properties of fresh gluten in small amplitude oscillation in shear (SAOS) and creep recovery after short application of stress was related to the hearth breadbaking performance of wheat flours using the multivariate statistics partial least squares (PLS) regression. The picture was completed by dough mixing and extensional properties, flour protein size distribution determined by SE-HPLC, and high molecular weight glutenin subunit (HMW-GS) composition. The sample set comprised 20 wheat cultivars grown at two different levels of nitrogen fertilizer in one location. Flours yielding stiffer and more elastic glutens, with higher elastic and viscous moduli (G' and G") and lower tan 8 values in SAOS, gave doughs that were better able to retain their shape during proving and baking, resulting in breads of high form ratios. Creep recovery measurements after short application of stress showed that glutens from flours of good breadmaking quality had high relative elastic recovery. The nitrogen fertilizer level affected the protein size distribution by an increase in monomeric proteins (gliadins), which gave glutens of higher tan delta and flatter bread loaves (lower form ratio).
Resumo:
Gluten was extracted from flours of several different wheat varieties of varying baking quality. Creep compliance was measured at room temperature and tan 6 was measured over a range of temperatures from 25 to 95 degrees C. The extracted glutens were heat-treated for 20 min at 25, 40, 50, 60, 70 and 90 degrees C in a water bath, freeze-dried and ground to a fine powder. Tests were carried out for extractability in sodium dodecyl sulphate, free sulphydryl (SH) groups using Ellman's method, surface hydrophobicity and molecular weight (MW) distribution (MWD) using field-flow fractionation and multi-angle laser light scattering. With increasing temperature, the glutens showed a decrease in extractability, with the most rapid decreases occurring between 70 and 90 degrees C, a major transition in tan 6 at around 60 degrees C and a minor transition at 40 degrees C for most varieties, a decrease in free SH groups and surface hydrophobicity and a shift in the MWD towards higher MW. The poor bread-making variety Riband showed the highest values of tan delta and Newtonian compliance, the lowest content of free SH groups and the largest increase of HMW/LMW with increasing temperature. No significant correlations with baking volume were found between any of the measured parameters. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fractionation and reconstitution techniques were used to study the contribution of enclogenous flour lipids to the quality of semisweet (Rich Tea-type) biscuits. Biscuit flour was defatted with chloroform and baked with bakery fat but without enclogenous lipid addition. Semisweet biscuits baked from defatted flour were flatter, denser, and harder and showed collapse of gas cells during baking when compared with control biscuits. Defatted flour semisweet doughs exhibited a different rheological behavior from the control samples showing higher storage and loss moduli (G' and G" values), that is, high viscoelasticity. Functionality was restored when total nonstarch flour lipids were added back to defatted flour. Both the polar and nonpolar lipid fractions had positive effects in restoring flour quality, but the polar lipid fraction was of greatest benefit. Both fractions were needed for complete restoration of both biscuit quality and dough rheological characteristics.
Resumo:
Objective: To describe the calculations and approaches used to design experimental diets of differing saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) compositions for use in a long-term dietary intervention study, and to evaluate the degree to which the dietary targets were met. Design, setting and subjects: Fifty-one students living in a university hall of residence consumed a reference (SFA) diet for 8 weeks followed by either a moderate MUFA (MM) diet or a high MUFA (HM) diet for 16 weeks. The three diets were designed to differ only in their proportions of SFA and MUFA, while keeping total fat, polyunsaturated fatty acids (PUFA), trans-fatty acids, and the ratio of palmitic to stearic acid, and n-6 to n-3 PUFA, unchanged. Results: Using habitual diet records and a standardised database for food fatty acid compositions, a sequential process of theoretical fat substitutions enabled suitable fat sources for use in the three diets to be identified, and experimental margarines for baking, spreading and the manufacture of snack foods to be designed. The dietary intervention was largely successful in achieving the fatty acid targets of the three diets, although unintended differences between the original target and the analysed fatty acid composition of the experimental margarines resulted in a lower than anticipated MUFA intake on the HM diet, and a lower ratio of palmitic to stearic acid compared with the reference or MM diet. Conclusions: This study has revealed important theoretical considerations that should be taken into account when designing diets of specific fatty acid composition, as well as practical issues of implementation.
Resumo:
A review of agronomic and genetic approaches as strategies for the mitigation of acrylamide risk in wheat and potato is presented. Acrylamide is formed through the Maillard reaction during high-temperature cooking, such as frying, roasting, or baking, and the main precursors are free asparagine and reducing sugars. In wheat flour, acrylamide formation is determined by asparagine levels and asparagine accumulation increases dramatically in response to sulfur deprivation and, to a much lesser extent, with nitrogen feeding. In potatoes, in which sugar concentrations are much lower, the relationships between acrylamide and its precursors are more complex. Much attention has been focused on reducing the levels of sugars in potatoes as a means of reducing acrylamide risk. However, the level of asparagine as a proportion of the total free amino acid pool has been shown to be a key parameter, indicating that when sugar levels are limiting, competition between asparagine and the other amino acids for participation in the Maillard reaction determines acrylamide formation. Genetic approaches to reducing acrylamide risk include the identification of cultivars; and other germplasm in which free asparagine and/or sugar levels are low and the manipulation of genes involved in sugar and amino acid metabolism and signaling. These approaches are made more difficult by genotype/ environment interactions that can result in a genotype being "good" in one environment but "poor" in another. Another important consideration is the effect that any change could have on flavor in the cooked product. Nevertheless, as both wheat and potato are regarded as of relatively high acrylamide risk compared with, for example, maize and rice, it is essential that changes are achieved that mitigate the problem.
Resumo:
The high pressure liquid chromatography method for determination of glutathione in free and protein-bound forms was re-established and has successfully been developed to measure glutathione related thiol compounds, i.e. L-cysteine, gamma-L-glutamyl-L-cysteine and L-cysteinyl-L-glycine, in both free and protein-bound forms. The natural levels of those compounds in typical strong, weak flours, and flours from 36 wheat varieties grown in the UK were investigated. The total free and protein-bound glutathione compounds found in the 36 UK varieties was 358 +/- 51 and 190 +/- 17 nmol/g, respectively. Multiple correlation analysis did not show a clear-cut relationship between the natural level of glutathione and any related thiol compound in either free or protein-bound forms and flour quality attributes, including rheological properties, baking performance, protein content and SDS sedimentation test values. Therefore, it can be suggested that glutathione and related thiol compounds at natural levels do not lead to significant differences in the rheological properties of dough and the baking performance of flour. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures of 25-60degreesC. Strain hardening and failure strain of cell walls both decreased with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties at higher temperatures (60degreesC), while the cell walls of poor breadmaking doughs became unstable at lower temperatures (45-50degreesC) and had lower strain hardening. Strain hardening measured at 50degreesC gave good correlations with baking volume, with the best correlations achieved between rheological measurements and baking tests that used similar mixing conditions. As predicted by the considered failure criterion, a strain hardening value of I defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to strain hardening properties, and that extensional rheological measurements can be used as indicators of baking quality.
Resumo:
Baking and 2-g mixograph analyses were performed for 55 cultivars (19 spring and 36 winter wheat) from various quality classes from the 2002 harvest in Poland. An instrumented 2-g direct-drive mixograph was used to study the mixing characteristics of the wheat cultivars. A number of parameters were extracted automatically from each mixograph trace and correlated with baking volume and flour quality parameters (protein content and high molecular weight glutenin subunit [HMW-GS] composition by SDS-PAGE) using multiple linear regression statistical analysis. Principal component analysis of the mixograph data discriminated between four flour quality classes, and predictions of baking volume were obtained using several selected mixograph parameters, chosen using a best subsets regression routine, giving R-2 values of 0.862-0.866. In particular, three new spring wheat strains (CHD 502a-c) recently registered in Poland were highly discriminated and predicted to give high baking volume on the basis of two mixograph parameters: peak bandwidth and 10-min bandwidth.
Resumo:
The applications of rheology to the main processes encountered during breadmaking (mixing, sheeting, fermentation and baking) are reviewed. The most commonly used rheological test methods and their relationships to product functionality are reviewed. It is shown that the most commonly used method for rheological testing of doughs, shear oscillation dynamic rheology, is generally used under deformation conditions inappropriate for breadmaking and shows little relationship with end-use performance. The frequency range used in conventional shear oscillation tests is limited to the plateau region, which is insensitive to changes in the HMW glutenin polymers thought to be responsible for variations in baking quality. The appropriate deformation conditions can be accessed either by long-time creep or relaxation measurements, or by large deformation extensional measurements at low strain rates and elevated temperatures. Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modern polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that the dynamic shear plateau modulus is essentially independent of variations in MW of glutens amongst wheat varieties of varying baking performance and also that it is not the size of the soluble glutenin polymers, but the secondary structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. Extensional strain hardening has been shown to be a sensitive indicator of entanglements and long-chain branching in HMW polymers, and is well related to baking performance of bread doughs. The Considere failure criterion for instability in extension of polymers defines a region below which bubble walls become unstable, and predicts that when strain hardening falls below a value of around 1, bubble walls are no longer stable and coalesce rapidly, resulting in loss of gas retention and lower volume and texture. Strain hardening in doughs has been shown to reach this value at increasingly higher temperatures for better breadmaking varieties and is directly related to bubble stability and baking performance. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Four fat blends based on palm fractions in combination with high oleic sunflower oil (HOSF) with a relatively low saturated fatty acid content (29.2±0.85%, i.e. less than 50% of that of butter) were prepared. The saturated fat was located in different triacylglycerols (TAG) structures in each blend. Principal saturated TAG were derived from palm stearin (POs, containing tripalmitoyl glycerol - PPP), palm mid fraction (PMF, containing 1,3-dipalmitoyl-2-oleoyl glycerol - POP) and interesterified PMF (inPMF, containing PPP, POP and rac-1,2-dipalmitoyl-3-oleoyl glycerol - PPO). Thus, in blend 1, composed of POs and HOSF, the saturates resided principally in PPP. In blend 2, composed of POs, PMF and HOSF, the principal saturate-containing TAG were PPP and POP. Blend 3, composed of inPMF and HOSF, was similar to blend 2 except that the disaturated TAG comprised a 2:1 mixture of PPO:POP. Finally, blend 4, a mixture of PMF and HOSF, had saturates present mainly as POP. The physical properties and the functionality of blends, as shortenings for puff pastry laminated in a warm bakery environment (20-30°C), were compared with each other, and with butter. Puff pastry prepared with blend 1 (POs:HOSF 29:71) and blend 4 (PMF:HOSF 41:59), was very hard; blend 2 (POs:PMF:HOSF 13:19:68) was most similar to butter in the compressibility of the baked product and it performed well in an independent baking trial; blend 3 (inPMF:HOSF 40:60) gave a product that required a higher force for compression than butter.