959 resultados para Automatic mesh generation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern CFD process consists of mesh generation, flow solving and post-processing integrated into an automated workflow. During the last several years we have developed and published research aimed at producing a meshing and geometry editing system, implemented in an end-to-end parallel, scalable manner and capable of automatic handling of large scale, real world applications. The particular focus of this paper is the associated unstructured mesh RANS flow solver and the porting of it to GPU architectures. After briefly describing the solver itself, the special issues associated with porting codes using unstructured data structures are discussed - followed by some application examples. Copyright © 2011 by W.N. Dawes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM) are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS). The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context. © 2013 E. Pavarino et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]In this paper we review the novel meccano method. We summarize the main stages (subdivision, mapping, optimization) of this automatic tetrahedral mesh generation technique and we concentrate the study to complex genus-zero solids. In this case, our procedure only requires a surface triangulation of the solid. A crucial consequence of our method is the volume parametrization of the solid to a cube. We construct volume T-meshes for isogeometric analysis by using this result. The efficiency of the proposed technique is shown with several examples. A comparison between the meccano method and standard mesh generation techniques is introduced.-1…

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A multi-objective design optimisation study has been carried out with the objectives to improve the overall efficiency of the device and to reduce the fuel consumption for the proposed micro-scale combustor design configuration. In a previous study we identified the topology of the combustion chamber that produced improved behaviour of the device in terms of the above design criteria. We now extend our design approach, and we propose a new configuration by the addition of a micro-cooling channel that will improve the thermal behaviour of the design as previously suggested in literature. Our initial numerical results revealed an improvement of 2.6% in the combustion efficiency when we applied the micro-cooling channel to an optimum design configuration we identified from our earlier multi-objective optimisation study, and under the same operating conditions. The computational modelling of the combustion process is implemented in the commercial computational fluid dynamics package ANSYS-CFX using Finite Rate Chemistry and a single step hydrogen-air reaction. With this model we try to balance good accuracy of the combustion solution and at the same time practicality within the context of an optimisation process. The whole design system comprises also the ANSYS-ICEM CFD package for the automatic geometry and mesh generation and the Multi-Objective Tabu Search algorithm for the design space exploration. We model the design problem with 5 geometrical parameters and 3 operational parameters subject to 5 design constraints that secure practicality and feasibility of the new optimum design configurations. The final results demonstrate the reliability and efficiency of the developed computational design system and most importantly we assess the practicality and manufacturability of the revealed optimum design configurations of micro-combustor devices. Copyright © 2013 by ASME.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

SMARTFIRE, an open architecture integrated CFD code and knowledge based system attempts to make fire field modeling accessible to non-experts in Computational Fluid Dynamics (CFD) such as fire fighters, architects and fire safety engineers. This is achieved by embedding expert knowledge into CFD software. This enables the 'black-art' associated with the CFD analysis such as selection of solvers, relaxation parameters, convergence criteria, time steps, grid and boundary condition specification to be guided by expert advice from the software. The user is however given the option of overriding these decisions, thus retaining ultimate control. SMARTFIRE also makes use of recent developments in CFD technology such as unstructured meshes and group solvers in order to make the CFD analysis more efficient. This paper describes the incorporation within SMARTFIRE of the expert fire modeling knowledge required for automatic problem setup and mesh generation as well as the concept and use of group solvers for automatic and manual dynamic control of the CFD code.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

From the model geometry creation to the model analysis, the stages in between such as mesh generation are the most manpower intensive phase in a mesh-based computational mechanics simulation process. On the other hand the model analysis is the most computing intensive phase. Advanced computational hardware and software have significantly reduced the computing time - and more importantly the trend is downward. With the kind of models envisaged coming, which are larger, more complex in geometry and modelling, and multiphysics, there is no clear trend that the manpower intensive phase is to decrease significantly in time - in the present way of operation it is more likely to increase with model complexity. In this paper we address this dilemma in collaborating components for models in electronic packaging application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Generating quadrilateral meshes is a highly non-trivial task, as design decisions are frequently driven by specific application demands. Automatic techniques can optimize objective quality metrics, such as mesh regularity, orthogonality, alignment and adaptivity; however, they cannot make subjective design decisions. There are a few quad meshing approaches that offer some mechanisms to include the user in the mesh generation process; however, these techniques either require a large amount of user interaction or do not provide necessary or easy to use inputs. Here, we propose a template-based approach for generating quad-only meshes from triangle surfaces. Our approach offers a flexible mechanism to allow external input, through the definition of alignment features that are respected during the mesh generation process. While allowing user inputs to support subjective design decisions, our approach also takes into account objective quality metrics to produce semi-regular, quad-only meshes that align well to desired surface features. Published by Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An improvement to the quality bidimensional Delaunay mesh generation algorithm, which combines the mesh refinement algorithms strategy of Ruppert and Shewchuk is proposed in this research. The developed technique uses diametral lenses criterion, introduced by L. P. Chew, with the purpose of eliminating the extremely obtuse triangles in the boundary mesh. This method splits the boundary segment and obtains an initial prerefinement, and thus reducing the number of necessary iterations to generate a high quality sequential triangulation. Moreover, it decreases the intensity of the communication and synchronization between subdomains in parallel mesh refinement. © 2008 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Technology scaling increasingly emphasizes complexity and non-ideality of the electrical behavior of semiconductor devices and boosts interest on alternatives to the conventional planar MOSFET architecture. TCAD simulation tools are fundamental to the analysis and development of new technology generations. However, the increasing device complexity is reflected in an augmented dimensionality of the problems to be solved. The trade-off between accuracy and computational cost of the simulation is especially influenced by domain discretization: mesh generation is therefore one of the most critical steps and automatic approaches are sought. Moreover, the problem size is further increased by process variations, calling for a statistical representation of the single device through an ensemble of microscopically different instances. The aim of this thesis is to present multi-disciplinary approaches to handle this increasing problem dimensionality in a numerical simulation perspective. The topic of mesh generation is tackled by presenting a new Wavelet-based Adaptive Method (WAM) for the automatic refinement of 2D and 3D domain discretizations. Multiresolution techniques and efficient signal processing algorithms are exploited to increase grid resolution in the domain regions where relevant physical phenomena take place. Moreover, the grid is dynamically adapted to follow solution changes produced by bias variations and quality criteria are imposed on the produced meshes. The further dimensionality increase due to variability in extremely scaled devices is considered with reference to two increasingly critical phenomena, namely line-edge roughness (LER) and random dopant fluctuations (RD). The impact of such phenomena on FinFET devices, which represent a promising alternative to planar CMOS technology, is estimated through 2D and 3D TCAD simulations and statistical tools, taking into account matching performance of single devices as well as basic circuit blocks such as SRAMs. Several process options are compared, including resist- and spacer-defined fin patterning as well as different doping profile definitions. Combining statistical simulations with experimental data, potentialities and shortcomings of the FinFET architecture are analyzed and useful design guidelines are provided, which boost feasibility of this technology for mainstream applications in sub-45 nm generation integrated circuits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Esta tesis doctoral está encuadrada dentro del marco general de la ingeniería biomédica aplicada al tratamiento de las enfermedades cardiovasculares, enfermedades que provocan alrededor de 1.9 millones (40%) de muertes al año en la Unión Europea. En este contexto surge el proyecto europeo SCATh-Smart Catheterization, cuyo objetivo principal es mejorar los procedimientos de cateterismo aórtico introduciendo nuevas tecnologías de planificación y navegación quirúrgica y minimizando el uso de fluoroscopía. En particular, esta tesis aborda el modelado y diagnóstico de aneurismas aórticos abdominales (AAA) y del trombo intraluminal (TIL), allí donde esté presente, así como la segmentación de estas estructuras en imágenes preoperatorias de RM. Los modelos físicos específicos del paciente, construidos a partir de imágenes médicas preoperatorias, tienen múltiples usos, que van desde la evaluación preoperatoria de estructuras anatómicas a la planificación quirúrgica para el guiado de catéteres. En el diagnóstico y tratamiento de AAA, los modelos físicos son útiles a la hora de evaluar diversas variables biomecánicas y fisiológicas de las estructuras vasculares. Existen múltiples técnicas que requieren de la generación de modelos físicos que representen la anatomía vascular. Una de las principales aplicaciones de los modelos físicos es el análisis de elementos finitos (FE). Las simulaciones de FE para AAA pueden ser específicas para el paciente y permiten modelar estados de estrés complejos, incluyendo los efectos provocados por el TIL. La aplicación de métodos numéricos de análisis tiene como requisito previo la generación de una malla computacional que representa la geometría de interés mediante un conjunto de elementos poliédricos, siendo los hexaédricos los que presentan mejores resultados. En las estructuras vasculares, generar mallas hexaédricas es un proceso especialmente exigente debido a la compleja anatomía 3D ramificada. La mayoría de los AAA se encuentran situados en la bifurcación de la arteria aorta en las arterias iliacas y es necesario modelar de manera fiel dicha bifurcación. En el caso de que la sangre se estanque en el aneurisma provocando un TIL, éste forma una estructura adyacente a la pared aórtica. De este modo, el contorno externo del TIL es el mismo que el contorno interno de la pared, por lo que las mallas resultantes deben reflejar esta particularidad, lo que se denomina como "mallas conformadas". El fin último de este trabajo es modelar las estructuras vasculares de modo que proporcionen nuevas herramientas para un mejor diagnóstico clínico, facilitando medidas de riesgo de rotura de la arteria, presión sistólica o diastólica, etc. Por tanto, el primer objetivo de esta tesis es diseñar un método novedoso y robusto para generar mallas hexaédricas tanto de la pared aórtica como del trombo. Para la identificación de estas estructuras se utilizan imágenes de resonancia magnética (RM). Deben mantenerse sus propiedades de adyacencia utilizando elementos de alta calidad, prestando especial atención al modelado de la bifurcación y a que sean adecuadas para el análisis de FE. El método tiene en cuenta la evolución de la línea central del vaso en el espacio tridimensional y genera la malla directamente a partir de las imágenes segmentadas, sin necesidad de reconstruir superficies triangulares. Con el fin de reducir la intervención del usuario en el proceso de generación de las mallas, es también objetivo de esta tesis desarrollar un método de segmentación semiautomática de las distintas estructuras de interés. Las principales contribuciones de esta tesis doctoral son: 1. El diseño, implementación y evaluación de un algoritmo de generación de mallas hexaédricas conformadas de la pared y el TIL a partir de los contornos segmentados en imágenes de RM. Se ha llevado a cabo una evaluación de calidad que determine su aplicabilidad a métodos de FE. Los resultados demuestran que el algoritmo desarrollado genera mallas conformadas de alta calidad incluso en la región de la bifurcación, que son adecuadas para su uso en métodos de análisis de FE. 2. El diseño, implementación y evaluación de un método de segmentación automático de las estructuras de interés. La luz arterial se segmenta de manera semiautomática utilizando un software disponible a partir de imágenes de RM con contraste. Los resultados de este proceso sirven de inicialización para la segmentación automática de las caras interna y externa de la pared aórtica utilizando métodos basado en modelos de textura y forma a partir de imágenes de RM sin contraste. Los resultados demuestran que el algoritmo desarrollado proporciona segmentaciones fieles de las distintas estructuras de interés. En conclusión, el trabajo realizado en esta tesis doctoral corrobora las hipótesis de investigación postuladas, y pretende servir como aportación para futuros avances en la generación de modelos físicos de geometrías biológicas. ABSTRACT The frame of this PhD Thesis is the biomedical engineering applied to the treatment of cardiovascular diseases, which cause around 1.9 million deaths per year in the European Union and suppose about 40% of deaths per year. In this context appears the European project SCATh-Smart Catheterization. The main objective of this project is creating a platform which improves the navigation of catheters in aortic catheterization minimizing the use of fluoroscopy. In the framework of this project, the specific field of this PhD Thesis is the diagnosis and modeling of abdominal aortic aneurysm (AAAs) and the intraluminal thrombus (ILT) whenever it is present. Patient-specific physical models built from preoperative imaging are becoming increasingly important in the area of minimally invasive surgery. These models can be employed for different purposes, such as the preoperatory evaluation of anatomic structures or the surgical planning for catheter guidance. In the specific case of AAA diagnosis and treatment, physical models are especially useful for evaluating pressures over vascular structures. There are multiple techniques that require the generation of physical models which represent the target anatomy. Finite element (FE) analysis is one the principal applications for physical models. FE simulations for AAA may be patient-specific and allow modeling biomechanical and physiological variables including those produced by ILT, and also the segmentation of those anatomical structures in preoperative MR images. Applying numeric methods requires the generation of a proper computational mesh. These meshes represent the patient anatomy using a set of polyhedral elements, with hexahedral elements providing better results. In the specific case of vascular structures, generating hexahedral meshes is a challenging task due to the complex 3D branching anatomy. Each patient’s aneurysm is unique, characterized by its location and shape, and must be accurately represented for subsequent analyses to be meaningful. Most AAAs are located in the region where the aorta bifurcates into the iliac arteries and it is necessary to model this bifurcation precisely and reliably. If blood stagnates in the aneurysm and forms an ILT, it exists as a conforming structure with the aortic wall, i.e. the ILT’s outer contour is the same as the wall’s inner contour. Therefore, resulting meshes must also be conforming. The main objective of this PhD Thesis is designing a novel and robust method for generating conforming hexahedral meshes for the aortic wall and the thrombus. These meshes are built using largely high-quality elements, especially at the bifurcation, that are suitable for FE analysis of tissue stresses. The method accounts for the evolution of the vessel’s centerline which may develop outside a single plane, and generates the mesh directly from segmented images without the requirement to reconstruct triangular surfaces. In order to reduce the user intervention in the mesh generation process is also a goal of this PhD. Thesis to develop a semiautomatic segmentation method for the structures of interest. The segmentation is performed from magnetic resonance image (MRI) sequences that have tuned to provide high contrast for the arterial tissue against the surrounding soft tissue, so that we determine the required information reliably. The main contributions of this PhD Thesis are: 1. The design, implementation and evaluation of an algorithm for generating hexahedral conforming meshes of the arterial wall and the ILT from the segmented contours. A quality inspection has been applied to the meshes in order to determine their suitability for FE methods. Results show that the developed algorithm generates high quality conforming hexahedral meshes even at the bifurcation region. Thus, these meshes are suitable for FE analysis. 2. The design, implementation and evaluation of a semiautomatic segmentation method for the structures of interest. The lumen is segmented in a semiautomatic way from contrast filled MRI using an available software. The results obtained from this process are used to initialize the automatic segmentation of the internal and external faces of the aortic wall. These segmentations are performed by methods based on texture and shape models from MRI with no contrast. The results show that the algorithm provides faithful segmentations of the structures of interest requiring minimal user intervention. In conclusion, the work undertaken in this PhD. Thesis verifies the investigation hypotheses. It intends to serve as basis for future physical model generation of proper biological anatomies used by numerical methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Terrain can be approximated by a triangular mesh consisting millions of 3D points. Multiresolution triangular mesh (MTM) structures are designed to support applications that use terrain data at variable levels of detail (LOD). Typically, an MTM adopts a tree structure where a parent node represents a lower-resolution approximation of its descendants. Given a region of interest (ROI) and a LOD, the process of retrieving the required terrain data from the database is to traverse the MTM tree from the root to reach all the nodes satisfying the ROI and LOD conditions. This process, while being commonly used for multiresolution terrain visualization, is inefficient as either a large number of sequential I/O operations or fetching a large amount of extraneous data is incurred. Various spatial indexes have been proposed in the past to address this problem, however level-by-level tree traversal remains a common practice in order to obtain topological information among the retrieved terrain data. A new MTM data structure called direct mesh is proposed. We demonstrate that with direct mesh the amount of data retrieval can be substantially reduced. Comparing with existing MTM indexing methods, a significant performance improvement has been observed for real-life terrain data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Node-based Local Mesh Generation (NLMG) algorithm, which is free of mesh inconsistency, is one of core algorithms in the Node-based Local Finite Element Method (NLFEM) to achieve the seamless link between mesh generation and stiffness matrix calculation, and the seamless link helps to improve the parallel efficiency of FEM. Furthermore, the key to ensure the efficiency and reliability of NLMG is to determine the candidate satellite-node set of a central node quickly and accurately. This paper develops a Fast Local Search Method based on Uniform Bucket (FLSMUB) and a Fast Local Search Method based on Multilayer Bucket (FLSMMB), and applies them successfully to the decisive problems, i.e. presenting the candidate satellite-node set of any central node in NLMG algorithm. Using FLSMUB or FLSMMB, the NLMG algorithm becomes a practical tool to reduce the parallel computation cost of FEM. Parallel numerical experiments validate that either FLSMUB or FLSMMB is fast, reliable and efficient for their suitable problems and that they are especially effective for computing the large-scale parallel problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new stormwater quality improvement device (SQID) called ‘Green Gully’ has been designed and developed in this study with an aim to re-using stormwater for irrigating plants and trees. The main purpose of the Green Gully is to collect road runoff/stormwater, make it suitable for irrigation and provide an automated network system for watering roadside plants and irrigational areas. This paper presents the design and development of Green Gully along with experimental and computational investigations of the performance of Green Gully. Performance (in the form of efficiency, i.e. the percentage of water flow through the gully grate) was experimentally determined using a gully model in the laboratory first, then a three dimensional numerical model was developed and simulated to predict the efficiency of Green Gully as a function of flow rate. Computational Fluid Dynamics (CFD) code FLUENT was used for the simulation. GAMBIT was used for geometry creation and mesh generation. Experimental and simulation results are discussed and compared in this paper. The predicted efficiency was compared with the laboratory measured efficiency. It was found that the simulated results are in good agreement with the experimental results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with the adaptive mesh generation for singularly perturbed nonlinear parameterized problems with a comparative research study on them. We propose an a posteriori error estimate for singularly perturbed parameterized problems by moving mesh methods with fixed number of mesh points. The well known a priori meshes are compared with the proposed one. The comparison results show that the proposed numerical method is highly effective for the generation of layer adapted a posteriori meshes. A numerical experiment of the error behavior on different meshes is carried out to highlight the comparison of the approximated solutions. (C) 2015 Elsevier B.V. All rights reserved.