990 resultados para Automatic identification
Resumo:
El daño cerebral adquirido (DCA) es un problema social y sanitario grave, de magnitud creciente y de una gran complejidad diagnóstica y terapéutica. Su elevada incidencia, junto con el aumento de la supervivencia de los pacientes, una vez superada la fase aguda, lo convierten también en un problema de alta prevalencia. En concreto, según la Organización Mundial de la Salud (OMS) el DCA estará entre las 10 causas más comunes de discapacidad en el año 2020. La neurorrehabilitación permite mejorar el déficit tanto cognitivo como funcional y aumentar la autonomía de las personas con DCA. Con la incorporación de nuevas soluciones tecnológicas al proceso de neurorrehabilitación se pretende alcanzar un nuevo paradigma donde se puedan diseñar tratamientos que sean intensivos, personalizados, monitorizados y basados en la evidencia. Ya que son estas cuatro características las que aseguran que los tratamientos son eficaces. A diferencia de la mayor parte de las disciplinas médicas, no existen asociaciones de síntomas y signos de la alteración cognitiva que faciliten la orientación terapéutica. Actualmente, los tratamientos de neurorrehabilitación se diseñan en base a los resultados obtenidos en una batería de evaluación neuropsicológica que evalúa el nivel de afectación de cada una de las funciones cognitivas (memoria, atención, funciones ejecutivas, etc.). La línea de investigación en la que se enmarca este trabajo de investigación pretende diseñar y desarrollar un perfil cognitivo basado no sólo en el resultado obtenido en esa batería de test, sino también en información teórica que engloba tanto estructuras anatómicas como relaciones funcionales e información anatómica obtenida de los estudios de imagen. De esta forma, el perfil cognitivo utilizado para diseñar los tratamientos integra información personalizada y basada en la evidencia. Las técnicas de neuroimagen representan una herramienta fundamental en la identificación de lesiones para la generación de estos perfiles cognitivos. La aproximación clásica utilizada en la identificación de lesiones consiste en delinear manualmente regiones anatómicas cerebrales. Esta aproximación presenta diversos problemas relacionados con inconsistencias de criterio entre distintos clínicos, reproducibilidad y tiempo. Por tanto, la automatización de este procedimiento es fundamental para asegurar una extracción objetiva de información. La delineación automática de regiones anatómicas se realiza mediante el registro tanto contra atlas como contra otros estudios de imagen de distintos sujetos. Sin embargo, los cambios patológicos asociados al DCA están siempre asociados a anormalidades de intensidad y/o cambios en la localización de las estructuras. Este hecho provoca que los algoritmos de registro tradicionales basados en intensidad no funcionen correctamente y requieran la intervención del clínico para seleccionar ciertos puntos (que en esta tesis hemos denominado puntos singulares). Además estos algoritmos tampoco permiten que se produzcan deformaciones grandes deslocalizadas. Hecho que también puede ocurrir ante la presencia de lesiones provocadas por un accidente cerebrovascular (ACV) o un traumatismo craneoencefálico (TCE). Esta tesis se centra en el diseño, desarrollo e implementación de una metodología para la detección automática de estructuras lesionadas que integra algoritmos cuyo objetivo principal es generar resultados que puedan ser reproducibles y objetivos. Esta metodología se divide en cuatro etapas: pre-procesado, identificación de puntos singulares, registro y detección de lesiones. Los trabajos y resultados alcanzados en esta tesis son los siguientes: Pre-procesado. En esta primera etapa el objetivo es homogeneizar todos los datos de entrada con el objetivo de poder extraer conclusiones válidas de los resultados obtenidos. Esta etapa, por tanto, tiene un gran impacto en los resultados finales. Se compone de tres operaciones: eliminación del cráneo, normalización en intensidad y normalización espacial. Identificación de puntos singulares. El objetivo de esta etapa es automatizar la identificación de puntos anatómicos (puntos singulares). Esta etapa equivale a la identificación manual de puntos anatómicos por parte del clínico, permitiendo: identificar un mayor número de puntos lo que se traduce en mayor información; eliminar el factor asociado a la variabilidad inter-sujeto, por tanto, los resultados son reproducibles y objetivos; y elimina el tiempo invertido en el marcado manual de puntos. Este trabajo de investigación propone un algoritmo de identificación de puntos singulares (descriptor) basado en una solución multi-detector y que contiene información multi-paramétrica: espacial y asociada a la intensidad. Este algoritmo ha sido contrastado con otros algoritmos similares encontrados en el estado del arte. Registro. En esta etapa se pretenden poner en concordancia espacial dos estudios de imagen de sujetos/pacientes distintos. El algoritmo propuesto en este trabajo de investigación está basado en descriptores y su principal objetivo es el cálculo de un campo vectorial que permita introducir deformaciones deslocalizadas en la imagen (en distintas regiones de la imagen) y tan grandes como indique el vector de deformación asociado. El algoritmo propuesto ha sido comparado con otros algoritmos de registro utilizados en aplicaciones de neuroimagen que se utilizan con estudios de sujetos control. Los resultados obtenidos son prometedores y representan un nuevo contexto para la identificación automática de estructuras. Identificación de lesiones. En esta última etapa se identifican aquellas estructuras cuyas características asociadas a la localización espacial y al área o volumen han sido modificadas con respecto a una situación de normalidad. Para ello se realiza un estudio estadístico del atlas que se vaya a utilizar y se establecen los parámetros estadísticos de normalidad asociados a la localización y al área. En función de las estructuras delineadas en el atlas, se podrán identificar más o menos estructuras anatómicas, siendo nuestra metodología independiente del atlas seleccionado. En general, esta tesis doctoral corrobora las hipótesis de investigación postuladas relativas a la identificación automática de lesiones utilizando estudios de imagen médica estructural, concretamente estudios de resonancia magnética. Basándose en estos cimientos, se han abrir nuevos campos de investigación que contribuyan a la mejora en la detección de lesiones. ABSTRACT Brain injury constitutes a serious social and health problem of increasing magnitude and of great diagnostic and therapeutic complexity. Its high incidence and survival rate, after the initial critical phases, makes it a prevalent problem that needs to be addressed. In particular, according to the World Health Organization (WHO), brain injury will be among the 10 most common causes of disability by 2020. Neurorehabilitation improves both cognitive and functional deficits and increases the autonomy of brain injury patients. The incorporation of new technologies to the neurorehabilitation tries to reach a new paradigm focused on designing intensive, personalized, monitored and evidence-based treatments. Since these four characteristics ensure the effectivity of treatments. Contrary to most medical disciplines, it is not possible to link symptoms and cognitive disorder syndromes, to assist the therapist. Currently, neurorehabilitation treatments are planned considering the results obtained from a neuropsychological assessment battery, which evaluates the functional impairment of each cognitive function (memory, attention, executive functions, etc.). The research line, on which this PhD falls under, aims to design and develop a cognitive profile based not only on the results obtained in the assessment battery, but also on theoretical information that includes both anatomical structures and functional relationships and anatomical information obtained from medical imaging studies, such as magnetic resonance. Therefore, the cognitive profile used to design these treatments integrates information personalized and evidence-based. Neuroimaging techniques represent an essential tool to identify lesions and generate this type of cognitive dysfunctional profiles. Manual delineation of brain anatomical regions is the classical approach to identify brain anatomical regions. Manual approaches present several problems related to inconsistencies across different clinicians, time and repeatability. Automated delineation is done by registering brains to one another or to a template. However, when imaging studies contain lesions, there are several intensity abnormalities and location alterations that reduce the performance of most of the registration algorithms based on intensity parameters. Thus, specialists may have to manually interact with imaging studies to select landmarks (called singular points in this PhD) or identify regions of interest. These two solutions have the same inconvenient than manual approaches, mentioned before. Moreover, these registration algorithms do not allow large and distributed deformations. This type of deformations may also appear when a stroke or a traumatic brain injury (TBI) occur. This PhD is focused on the design, development and implementation of a new methodology to automatically identify lesions in anatomical structures. This methodology integrates algorithms whose main objective is to generate objective and reproducible results. It is divided into four stages: pre-processing, singular points identification, registration and lesion detection. Pre-processing stage. In this first stage, the aim is to standardize all input data in order to be able to draw valid conclusions from the results. Therefore, this stage has a direct impact on the final results. It consists of three steps: skull-stripping, spatial and intensity normalization. Singular points identification. This stage aims to automatize the identification of anatomical points (singular points). It involves the manual identification of anatomical points by the clinician. This automatic identification allows to identify a greater number of points which results in more information; to remove the factor associated to inter-subject variability and thus, the results are reproducible and objective; and to eliminate the time spent on manual marking. This PhD proposed an algorithm to automatically identify singular points (descriptor) based on a multi-detector approach. This algorithm contains multi-parametric (spatial and intensity) information. This algorithm has been compared with other similar algorithms found on the state of the art. Registration. The goal of this stage is to put in spatial correspondence two imaging studies of different subjects/patients. The algorithm proposed in this PhD is based on descriptors. Its main objective is to compute a vector field to introduce distributed deformations (changes in different imaging regions), as large as the deformation vector indicates. The proposed algorithm has been compared with other registration algorithms used on different neuroimaging applications which are used with control subjects. The obtained results are promising and they represent a new context for the automatic identification of anatomical structures. Lesion identification. This final stage aims to identify those anatomical structures whose characteristics associated to spatial location and area or volume has been modified with respect to a normal state. A statistical study of the atlas to be used is performed to establish which are the statistical parameters associated to the normal state. The anatomical structures that may be identified depend on the selected anatomical structures identified on the atlas. The proposed methodology is independent from the selected atlas. Overall, this PhD corroborates the investigated research hypotheses regarding the automatic identification of lesions based on structural medical imaging studies (resonance magnetic studies). Based on these foundations, new research fields to improve the automatic identification of lesions in brain injury can be proposed.
Resumo:
As a device, the laser is an elegant conglomerate of elementary physical theories and state-of-the-art techniques ranging from quantum mechanics, thermal and statistical physics, material growth and non-linear mathematics. The laser has been a commercial success in medicine and telecommunication while driving the development of highly optimised devices specifically designed for a plethora of uses. Due to their low-cost and large-scale predictability many aspects of modern life would not function without the lasers. However, the laser is also a window into a system that is strongly emulated by non-linear mathematical systems and are an exceptional apparatus in the development of non-linear dynamics and is often used in the teaching of non-trivial mathematics. While single-mode semiconductor lasers have been well studied, a unified comparison of single and two-mode lasers is still needed to extend the knowledge of semiconductor lasers, as well as testing the limits of current model. Secondly, this work aims to utilise the optically injected semiconductor laser as a tool so study non-linear phenomena in other fields of study, namely ’Rogue waves’ that have been previously witnessed in oceanography and are suspected as having non-linear origins. The first half of this thesis includes a reliable and fast technique to categorise the dynamical state of optically injected two mode and single mode lasers. Analysis of the experimentally obtained time-traces revealed regions of various dynamics and allowed the automatic identification of their respective stability. The impact of this method is also extended to the detection regions containing bi-stabilities. The second half of the thesis presents an investigation into the origins of Rogue Waves in single mode lasers. After confirming their existence in single mode lasers, their distribution in time and sudden appearance in the time-series is studied to justify their name. An examination is also performed into the existence of paths that make Rogue Waves possible and the impact of noise on their distribution is also studied.
Resumo:
Spatial-temporal dynamics of zooplankton in the Caravelas river estuary (Bahia, Brazil). The survey was conducted in order to describe the zooplankton community of the estuary Caravelas (Bahia, Brazil), to quantify and relate the patterns of horizontal and vertical transport with the type of tide (neap and spring) and tidal phase (flood and ebb). Zooplankton samples were collected with the aid of a suction pump (300L), filtered in plankton nets (300μm) and fixed in saline formalin 4%. Samples were collected at a fixed point (A1), near the mouth of the estuary, with samples taken at neap tides and spring tides during the dry and rainy seasons. Samples were collected for 13 hours, at intervals of 1 hour in 3 depths: surface, middle and bottom. Simultaneous collection of biological, we measured the current velocity, temperature and salinity of the water through CTD. In the laboratory, samples were selected for analysis in estereomicroscope, with 25 groups identified, with Copepoda getting the highest number of species. The 168 samples obtained from temporal samples were subsampled and processed on equipment ZooScan, with the aid of software ZooProcess at the end were generated 458.997 vingnettes. 8 taxa were identified automatically, with 16 classified as a semi-automatic. The group Copepoda, despite the limited taxonomic refinement ZooScan, obtained 2 genera and 1 species identified automatically. Among the seasons dry and wet groups Brachyura (zoea), Chaetognatha, and the Calanoid copepods (others), Temora spp., Oithona spp. and Euterpina acutifrons were those who had higher frequency of occurrence, appearing in more than 70% of the samples. Copepoda group showed the largest percentage of relative abundance in both seasons. There was no seasonal variation of total zooplankton, with an average density of 7826±4219 org.m-3 in the dry season, and 7959±3675 org.m-3 in the rainy season, neither between the types and phases of the tides, but seasonal differences were significant recorded for the main zooplankton groups. Vertical stratification was seen for the major zooplankton groups (Brachyura, Chaetognatha, Calanoida (other), Oithona spp, Temora spp. e Euterpina acutifrons). The scale of this stratification varied with the type (square or tide) and tidal phase (flood or ebb). The instantaneous transport was more influenced by current velocity, with higher values observed in spring tides to the total zooplankton, however, there was a variation of this pattern depending on the zooplankton group. According to the data import and export of total zooplankton, the outflow of organisms of the estuary was higher than the input. The results suggest that the estuary of Caravelas may influence the dynamics of organic matter to the adjacent coast, with possible consequences in National Marine Park of Abrolhos
Resumo:
Dissertação de Mestrado, Ciências da Linguagem, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2016
Resumo:
Spatial-temporal dynamics of zooplankton in the Caravelas river estuary (Bahia, Brazil). The survey was conducted in order to describe the zooplankton community of the estuary Caravelas (Bahia, Brazil), to quantify and relate the patterns of horizontal and vertical transport with the type of tide (neap and spring) and tidal phase (flood and ebb). Zooplankton samples were collected with the aid of a suction pump (300L), filtered in plankton nets (300μm) and fixed in saline formalin 4%. Samples were collected at a fixed point (A1), near the mouth of the estuary, with samples taken at neap tides and spring tides during the dry and rainy seasons. Samples were collected for 13 hours, at intervals of 1 hour in 3 depths: surface, middle and bottom. Simultaneous collection of biological, we measured the current velocity, temperature and salinity of the water through CTD. In the laboratory, samples were selected for analysis in estereomicroscope, with 25 groups identified, with Copepoda getting the highest number of species. The 168 samples obtained from temporal samples were subsampled and processed on equipment ZooScan, with the aid of software ZooProcess at the end were generated 458.997 vingnettes. 8 taxa were identified automatically, with 16 classified as a semi-automatic. The group Copepoda, despite the limited taxonomic refinement ZooScan, obtained 2 genera and 1 species identified automatically. Among the seasons dry and wet groups Brachyura (zoea), Chaetognatha, and the Calanoid copepods (others), Temora spp., Oithona spp. and Euterpina acutifrons were those who had higher frequency of occurrence, appearing in more than 70% of the samples. Copepoda group showed the largest percentage of relative abundance in both seasons. There was no seasonal variation of total zooplankton, with an average density of 7826±4219 org.m-3 in the dry season, and 7959±3675 org.m-3 in the rainy season, neither between the types and phases of the tides, but seasonal differences were significant recorded for the main zooplankton groups. Vertical stratification was seen for the major zooplankton groups (Brachyura, Chaetognatha, Calanoida (other), Oithona spp, Temora spp. e Euterpina acutifrons). The scale of this stratification varied with the type (square or tide) and tidal phase (flood or ebb). The instantaneous transport was more influenced by current velocity, with higher values observed in spring tides to the total zooplankton, however, there was a variation of this pattern depending on the zooplankton group. According to the data import and export of total zooplankton, the outflow of organisms of the estuary was higher than the input. The results suggest that the estuary of Caravelas may influence the dynamics of organic matter to the adjacent coast, with possible consequences in National Marine Park of Abrolhos
Resumo:
This research proposes a solution for integrating RFID - Radio Frequency Identification technology within a structure based on CFRPs - Carbon Fiber Reinforced Polymers. Therefore, the main objective is to use technology to monitor and track composite components during manufacturing and service life. The study can be divided into two macro-areas. The first portion of the research evaluates the impact of the composite materials used on transmitting the electromagnetic signal to and from the tag. RFID technology communicates through radio frequencies to to track and trace items associated with the tags. In the first instance, a feasibility study was carried out to assess using commercially available tags. Then, after evaluating different solutions, it was decided to incorporate the tags into coupons during production. The second portion of the research is focused on evaluating the impact on the composite material's resistance to tag embedding. It starts with designing tensile test specimens through the FEM model with different housing configurations. Subsequently, the best configuration was tested in the facilities of the In the Faculty of Aerospace Engineering at TU Delft, particularly in the Structure & Materials Laboratory, two tests were conducted: the first one based on ASTM D3039/D3039 - 14 - Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, the second one dividing the path to failure into failure intervals in a load-unload-reload. Both tests were accompanied by instruments such as DIC, AE, C-Scan and Optical Microscopes. The expected result of the inclusion of RFID tags in composite components is that it brings added value to the parts with which it is associated without affecting too much its mechanical properties. This comes first from the automatic identification of RFID during the production cycle and its useful life. As a result, improvements were made in the design of production facilities.
Resumo:
The demonstration proposal moves from the capabilities of a wireless biometric badge [4], which integrates a localization and tracking service along with an automatic personal identification mechanism, to show how a full system architecture is devised to enable the control of physical accesses to restricted areas. The system leverages on the availability of a novel IEEE 802.15.4/Zigbee Cluster Tree network model, on enhanced security levels and on the respect of all the users' privacy issues.
Resumo:
Centrifugal pumps are a notable end-consumer of electrical energy. Typical application of a centrifugal pump is the filling or emptying of a reservoir tank, where the pump is often operated at a constant speed until the process is completed. Installing a frequency converter to control the motor substitutes the traditional fixed-speed pumping system, allows the optimization of rotational speed profile for the pumping tasks and enables the estimation of rotational speed and shaft torque of an induction motor without any additional measurements from the motor shaft. Utilization of variable-speed operation provides the possibility to decrease the overall energy consumption of the pumping task. The static head of the pumping process may change during the pumping task. In such systems, the minimum rotational speed changes during reservoir filling or emptying, and the minimum energy consumption can’t be achieved with a fixed rotational speed. This thesis presents embedded algorithms to automatically identify, optimize and monitor pumping processes between supply and destination reservoirs, and evaluates the changing static head –based optimization method.
Resumo:
The span of writer identification extends to broad domes like digital rights administration, forensic expert decisionmaking systems, and document analysis systems and so on. As the success rate of a writer identification scheme is highly dependent on the features extracted from the documents, the phase of feature extraction and therefore selection is highly significant for writer identification schemes. In this paper, the writer identification in Malayalam language is sought for by utilizing feature extraction technique such as Scale Invariant Features Transform (SIFT).The schemes are tested on a test bed of 280 writers and performance evaluated
Resumo:
OBJECTIVE: Besides DNA, dental radiographs play a major role in the identification of victims in mass casualties or in corpses with major postmortem alterations. Computed tomography (CT) is increasingly applied in forensic investigations and is used to scan the dentition of deceased persons within minutes. We investigated different restoration materials concerning their radiopacity in CT for dental identification purposes. METHODS: Extracted teeth with different filling materials (composite, amalgam, ceramic, temporary fillings) were CT scanned. Radiopacities of the filling materials were analyzed in extended CT scale images. RESULTS: Radiopacity values ranged from 6000-8500HU (temporary fillings), 4500-17000HU (composite fillings) and >30710HU (Amalgam and Gold). The values were used to define presets for a 3D colored volume rendering software. CONCLUSIONS: The effects of filling material caused streak artifacts could be distinctively reduced for the assessment of the dental status and a postprocessing algorithm was introduced that allows for 3D color encoded visualization and discrimination of different dental restorations based on postmortem CT data.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The use of human brain electroencephalography (EEG) signals for automatic person identi cation has been investigated for a decade. It has been found that the performance of an EEG-based person identication system highly depends on what feature to be extracted from multi-channel EEG signals. Linear methods such as Power Spectral Density and Autoregressive Model have been used to extract EEG features. However these methods assumed that EEG signals are stationary. In fact, EEG signals are complex, non-linear, non-stationary, and random in nature. In addition, other factors such as brain condition or human characteristics may have impacts on the performance, however these factors have not been investigated and evaluated in previous studies. It has been found in the literature that entropy is used to measure the randomness of non-linear time series data. Entropy is also used to measure the level of chaos of braincomputer interface systems. Therefore, this thesis proposes to study the role of entropy in non-linear analysis of EEG signals to discover new features for EEG-based person identi- cation. Five dierent entropy methods including Shannon Entropy, Approximate Entropy, Sample Entropy, Spectral Entropy, and Conditional Entropy have been proposed to extract entropy features that are used to evaluate the performance of EEG-based person identication systems and the impacts of epilepsy, alcohol, age and gender characteristics on these systems. Experiments were performed on the Australian EEG and Alcoholism datasets. Experimental results have shown that, in most cases, the proposed entropy features yield very fast person identication, yet with compatible accuracy because the feature dimension is low. In real life security operation, timely response is critical. The experimental results have also shown that epilepsy, alcohol, age and gender characteristics have impacts on the EEG-based person identication systems.
Resumo:
The study of acoustic communication in animals often requires not only the recognition of species specific acoustic signals but also the identification of individual subjects, all in a complex acoustic background. Moreover, when very long recordings are to be analyzed, automatic recognition and identification processes are invaluable tools to extract the relevant biological information. A pattern recognition methodology based on hidden Markov models is presented inspired by successful results obtained in the most widely known and complex acoustical communication signal: human speech. This methodology was applied here for the first time to the detection and recognition of fish acoustic signals, specifically in a stream of round-the-clock recordings of Lusitanian toadfish (Halobatrachus didactylus) in their natural estuarine habitat. The results show that this methodology is able not only to detect the mating sounds (boatwhistles) but also to identify individual male toadfish, reaching an identification rate of ca. 95%. Moreover this method also proved to be a powerful tool to assess signal durations in large data sets. However, the system failed in recognizing other sound types.