915 resultados para Automatic classifier


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectus Carinatum is a deformity of the chest wall, characterized by an anterior protrusion of the sternum, often corrected surgically due to cosmetic motivation. This work presents an alternative approach to the current open surgery option, proposing a novel technique based on a personalized orthosis. Two different processes for the orthosis’ personalization are presented. One based on a 3D laser scan of the patient chest, followed by the reconstruction of the thoracic wall mesh using a radial basis function, and a second one, based on a computer tomography scan followed by a neighbouring cells algorithm. The axial position where the orthosis is to be located is automatically calculated using a Ray-Triangle intersection method, whose outcome is input to a pseudo Kochenek interpolating spline method to define the orthosis curvature. Results show that no significant differences exist between the patient chest physiognomy and the curvature angle and size of the orthosis, allowing a better cosmetic outcome and less initial discomfort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectus excavatum is the most common deformity of the thorax and usually comprises Computed Tomography (CT) examination for pre-operative diagnosis. Aiming at the elimination of the high amounts of CT radiation exposure, this work presents a new methodology for the replacement of CT by a laser scanner (radiation-free) in the treatment of pectus excavatum using personally modeled prosthesis. The complete elimination of CT involves the determination of ribs external outline, at the maximum sternum depression point for prosthesis placement, based on chest wall skin surface information, acquired by a laser scanner. The developed solution resorts to artificial neural networks trained with data vectors from 165 patients. Scaled Conjugate Gradient, Levenberg-Marquardt, Resilient Back propagation and One Step Secant gradient learning algorithms were used. The training procedure was performed using the soft tissue thicknesses, determined using image processing techniques that automatically segment the skin and rib cage. The developed solution was then used to determine the ribs outline in data from 20 patient scanners. Tests revealed that ribs position can be estimated with an average error of about 6.82±5.7 mm for the left and right side of the patient. Such an error range is well below current prosthesis manual modeling (11.7±4.01 mm) even without CT imagiology, indicating a considerable step forward towards CT replacement by a 3D scanner for prosthesis personalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current level of demand by customers in the electronics industry requires the production of parts with an extremely high level of reliability and quality to ensure complete confidence on the end customer. Automatic Optical Inspection (AOI) machines have an important role in the monitoring and detection of errors during the manufacturing process for printed circuit boards. These machines present images of products with probable assembly mistakes to an operator and him decide whether the product has a real defect or if in turn this was an automated false detection. Operator training is an important aspect for obtaining a lower rate of evaluation failure by the operator and consequently a lower rate of actual defects that slip through to the following processes. The Gage R&R methodology for attributes is part of a Six Sigma strategy to examine the repeatability and reproducibility of an evaluation system, thus giving important feedback on the suitability of each operator in classifying defects. This methodology was already applied in several industry sectors and services at different processes, with excellent results in the evaluation of subjective parameters. An application for training operators of AOI machines was developed, in order to be able to check their fitness and improve future evaluation performance. This application will provide a better understanding of the specific training needs for each operator, and also to accompany the evolution of the training program for new components which in turn present additional new difficulties for the operator evaluation. The use of this application will contribute to reduce the number of defects misclassified by the operators that are passed on to the following steps in the productive process. This defect reduction will also contribute to the continuous improvement of the operator evaluation performance, which is seen as a quality management goal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the current frontiers in the clinical management of Pectus Excavatum (PE) patients is the prediction of the surgical outcome prior to the intervention. This can be done through computerized simulation of the Nuss procedure, which requires an anatomically correct representation of the costal cartilage. To this end, we take advantage of the costal cartilage tubular structure to detect it through multi-scale vesselness filtering. This information is then used in an interactive 2D initialization procedure which uses anatomical maximum intensity projections of 3D vesselness feature images to efficiently initialize the 3D segmentation process. We identify the cartilage tissue centerlines in these projected 2D images using a livewire approach. We finally refine the 3D cartilage surface through region-based sparse field level-sets. We have tested the proposed algorithm in 6 noncontrast CT datasets from PE patients. A good segmentation performance was found against reference manual contouring, with an average Dice coefficient of 0.75±0.04 and an average mean surface distance of 1.69±0.30mm. The proposed method requires roughly 1 minute for the interactive initialization step, which can positively contribute to an extended use of this tool in clinical practice, since current manual delineation of the costal cartilage can take up to an hour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dental implant recognition in patients without available records is a time-consuming and not straightforward task. The traditional method is a complete user-dependent process, where the expert compares a 2D X-ray image of the dental implant with a generic database. Due to the high number of implants available and the similarity between them, automatic/semi-automatic frameworks to aide implant model detection are essential. In this study, a novel computer-aided framework for dental implant recognition is suggested. The proposed method relies on image processing concepts, namely: (i) a segmentation strategy for semi-automatic implant delineation; and (ii) a machine learning approach for implant model recognition. Although the segmentation technique is the main focus of the current study, preliminary details of the machine learning approach are also reported. Two different scenarios are used to validate the framework: (1) comparison of the semi-automatic contours against implant’s manual contours of 125 X-ray images; and (2) classification of 11 known implants using a large reference database of 601 implants. Regarding experiment 1, 0.97±0.01, 2.24±0.85 pixels and 11.12±6 pixels of dice metric, mean absolute distance and Hausdorff distance were obtained, respectively. In experiment 2, 91% of the implants were successfully recognized while reducing the reference database to 5% of its original size. Overall, the segmentation technique achieved accurate implant contours. Although the preliminary classification results prove the concept of the current work, more features and an extended database should be used in a future work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative analysis of cine cardiac magnetic resonance (CMR) images for the assessment of global left ventricular morphology and function remains a routine task in clinical cardiology practice. To date, this process requires user interaction and therefore prolongs the examination (i.e. cost) and introduces observer variability. In this study, we sought to validate the feasibility, accuracy, and time efficiency of a novel framework for automatic quantification of left ventricular global function in a clinical setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opposite enantiomers exhibit different NMR properties in the presence of an external common chiral element, and a chiral molecule exhibits different NMR properties in the presence of external enantiomeric chiral elements. Automatic prediction of such differences, and comparison with experimental values, leads to the assignment of the absolute configuration. Here two cases are reported, one using a dataset of 80 chiral secondary alcohols esterified with (R)-MTPA and the corresponding 1H NMR chemical shifts and the other with 94 13C NMR chemical shifts of chiral secondary alcohols in two enantiomeric chiral solvents. For the first application, counterpropagation neural networks were trained to predict the sign of the difference between chemical shifts of opposite stereoisomers. The neural networks were trained to process the chirality code of the alcohol as the input, and to give the NMR property as the output. In the second application, similar neural networks were employed, but the property to predict was the difference of chemical shifts in the two enantiomeric solvents. For independent test sets of 20 objects, 100% correct predictions were obtained in both applications concerning the sign of the chemical shifts differences. Additionally, with the second dataset, the difference of chemical shifts in the two enantiomeric solvents was quantitatively predicted, yielding r2 0.936 for the test set between the predicted and experimental values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Personal memories composed of digital pictures are very popular at the moment. To retrieve these media items annotation is required. During the last years, several approaches have been proposed in order to overcome the image annotation problem. This paper presents our proposals to address this problem. Automatic and semi-automatic learning methods for semantic concepts are presented. The automatic method is based on semantic concepts estimated using visual content, context metadata and audio information. The semi-automatic method is based on results provided by a computer game. The paper describes our proposals and presents their evaluations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of electricity markets operation has been gaining an increasing importance in last years, as result of the new challenges that the electricity markets restructuring produced. This restructuring increased the competitiveness of the market, but with it its complexity. The growing complexity and unpredictability of the market’s evolution consequently increases the decision making difficulty. Therefore, the intervenient entities are forced to rethink their behaviour and market strategies. Currently, lots of information concerning electricity markets is available. These data, concerning innumerous regards of electricity markets operation, is accessible free of charge, and it is essential for understanding and suitably modelling electricity markets. This paper proposes a tool which is able to handle, store and dynamically update data. The development of the proposed tool is expected to be of great importance to improve the comprehension of electricity markets and the interactions among the involved entities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a proposal for an automatic vehicle detection and classification (AVDC) system. The proposed AVDC should classify vehicles accordingly to the Portuguese legislation (vehicle height over the first axel and number of axels), and should also support profile based classification. The AVDC should also fulfill the needs of the Portuguese motorway operator, Brisa. For the classification based on the profile we propose:he use of Eigenprofiles, a technique based on Principal Components Analysis. The system should also support multi-lane free flow for future integration in this kind of environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic liver disease (CLD) is most of the time an asymptomatic, progressive, and ultimately potentially fatal disease. In this study, an automatic hierarchical procedure to stage CLD using ultrasound images, laboratory tests, and clinical records are described. The first stage of the proposed method, called clinical based classifier (CBC), discriminates healthy from pathologic conditions. When nonhealthy conditions are detected, the method refines the results in three exclusive pathologies in a hierarchical basis: 1) chronic hepatitis; 2) compensated cirrhosis; and 3) decompensated cirrhosis. The features used as well as the classifiers (Bayes, Parzen, support vector machine, and k-nearest neighbor) are optimally selected for each stage. A large multimodal feature database was specifically built for this study containing 30 chronic hepatitis cases, 34 compensated cirrhosis cases, and 36 decompensated cirrhosis cases, all validated after histopathologic analysis by liver biopsy. The CBC classification scheme outperformed the nonhierachical one against all scheme, achieving an overall accuracy of 98.67% for the normal detector, 87.45% for the chronic hepatitis detector, and 95.71% for the cirrhosis detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steatosis, also known as fatty liver, corresponds to an abnormal retention of lipids within the hepatic cells and reflects an impairment of the normal processes of synthesis and elimination of fat. Several causes may lead to this condition, namely obesity, diabetes, or alcoholism. In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis from ultrasound images. The features are selected in order to catch the same characteristics used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The algorithm, designed in a Bayesian framework, computes two images: i) a despeckled one, containing the anatomic and echogenic information of the liver, and ii) an image containing only the speckle used to compute the textural features. These images are computed from the estimated RF signal generated by the ultrasound probe where the dynamic range compression performed by the equipment is taken into account. A Bayes classifier, trained with data manually classified by expert clinicians and used as ground truth, reaches an overall accuracy of 95% and a 100% of sensitivity. The main novelties of the method are the estimations of the RF and speckle images which make it possible to accurately compute textural features of the liver parenchyma relevant for the diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introdução Actualmente, as mensagens electrónicas são consideradas um importante meio de comunicação. As mensagens electrónicas – vulgarmente conhecidas como emails – são utilizadas fácil e frequentemente para enviar e receber o mais variado tipo de informação. O seu uso tem diversos fins gerando diariamente um grande número de mensagens e, consequentemente um enorme volume de informação. Este grande volume de informação requer uma constante manipulação das mensagens de forma a manter o conjunto organizado. Tipicamente esta manipulação consiste em organizar as mensagens numa taxonomia. A taxonomia adoptada reflecte os interesses e as preferências particulares do utilizador. Motivação A organização manual de emails é uma actividade morosa e que consome tempo. A optimização deste processo através da implementação de um método automático, tende a melhorar a satisfação do utilizador. Cada vez mais existe a necessidade de encontrar novas soluções para a manipulação de conteúdo digital poupando esforços e custos ao utilizador; esta necessidade, concretamente no âmbito da manipulação de emails, motivou a realização deste trabalho. Hipótese O objectivo principal deste projecto consiste em permitir a organização ad-hoc de emails com um esforço reduzido por parte do utilizador. A metodologia proposta visa organizar os emails num conjunto de categorias, disjuntas, que reflectem as preferências do utilizador. A principal finalidade deste processo é produzir uma organização onde as mensagens sejam classificadas em classes apropriadas requerendo o mínimo número esforço possível por parte do utilizador. Para alcançar os objectivos estipulados, este projecto recorre a técnicas de mineração de texto, em especial categorização automática de texto, e aprendizagem activa. Para reduzir a necessidade de inquirir o utilizador – para etiquetar exemplos de acordo com as categorias desejadas – foi utilizado o algoritmo d-confidence. Processo de organização automática de emails O processo de organizar automaticamente emails é desenvolvido em três fases distintas: indexação, classificação e avaliação. Na primeira fase, fase de indexação, os emails passam por um processo transformativo de limpeza que visa essencialmente gerar uma representação dos emails adequada ao processamento automático. A segunda fase é a fase de classificação. Esta fase recorre ao conjunto de dados resultantes da fase anterior para produzir um modelo de classificação, aplicando-o posteriormente a novos emails. Partindo de uma matriz onde são representados emails, termos e os seus respectivos pesos, e um conjunto de exemplos classificados manualmente, um classificador é gerado a partir de um processo de aprendizagem. O classificador obtido é então aplicado ao conjunto de emails e a classificação de todos os emails é alcançada. O processo de classificação é feito com base num classificador de máquinas de vectores de suporte recorrendo ao algoritmo de aprendizagem activa d-confidence. O algoritmo d-confidence tem como objectivo propor ao utilizador os exemplos mais significativos para etiquetagem. Ao identificar os emails com informação mais relevante para o processo de aprendizagem, diminui-se o número de iterações e consequentemente o esforço exigido por parte dos utilizadores. A terceira e última fase é a fase de avaliação. Nesta fase a performance do processo de classificação e a eficiência do algoritmo d-confidence são avaliadas. O método de avaliação adoptado é o método de validação cruzada denominado 10-fold cross validation. Conclusões O processo de organização automática de emails foi desenvolvido com sucesso, a performance do classificador gerado e do algoritmo d-confidence foi relativamente boa. Em média as categorias apresentam taxas de erro relativamente baixas, a não ser as classes mais genéricas. O esforço exigido pelo utilizador foi reduzido, já que com a utilização do algoritmo d-confidence obteve-se uma taxa de erro próxima do valor final, mesmo com um número de casos etiquetados abaixo daquele que é requerido por um método supervisionado. É importante salientar, que além do processo automático de organização de emails, este projecto foi uma excelente oportunidade para adquirir conhecimento consistente sobre mineração de texto e sobre os processos de classificação automática e recuperação de informação. O estudo de áreas tão interessantes despertou novos interesses que consistem em verdadeiros desafios futuros.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conferência: 39th Annual Conference of the IEEE Industrial-Electronics-Society (IECON), Vienna, Austria, Nov 10-14, 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Managing programming exercises require several heterogeneous systems such as evaluation engines, learning objects repositories and exercise resolution environments. The coordination of networks of such disparate systems is rather complex. These tools would be too specific to incorporate in an e-Learning platform. Even if they could be provided as pluggable components, the burden of maintaining them would be prohibitive to institutions with few courses in those domains. This work presents a standard based approach for the coordination of a network of e-Learning systems participating on the automatic evaluation of programming exercises. The proposed approach uses a pivot component to orchestrate the interaction among all the systems using communication standards. This approach was validated through its effective use on classroom and we present some preliminary results.