868 resultados para Auto-localizzazione
Resumo:
A propriedade de auto-cura, em redes inteligente de distribuição de energia elétrica, consiste em encontrar uma proposta de reconfiguração do sistema de distribuição com o objetivo de recuperar parcial ou totalmente o fornecimento de energia aos clientes da rede, na ocorrência de uma falha na rede que comprometa o fornecimento. A busca por uma solução satisfatória é um problema combinacional cuja complexidade está ligada ao tamanho da rede. Um método de busca exaustiva se torna um processo muito demorado e muitas vezes computacionalmente inviável. Para superar essa dificuldade, pode-se basear nas técnicas de geração de árvores de extensão mínima do grafo, representando a rede de distribuição. Porém, a maioria dos estudos encontrados nesta área são implementações centralizadas, onde proposta de reconfiguração é obtida por um sistema de supervisão central. Nesta dissertação, propõe-se uma implementação distribuída, onde cada chave da rede colabora na elaboração da proposta de reconfiguração. A solução descentralizada busca uma redução no tempo de reconfiguração da rede em caso de falhas simples ou múltiplas, aumentando assim a inteligência da rede. Para isso, o algoritmo distribuído GHS é utilizado como base na elaboração de uma solução de auto-cura a ser embarcada nos elementos processadores que compõem as chaves de comutação das linhas da rede inteligente de distribuição. A solução proposta é implementada utilizando robôs como unidades de processamento que se comunicam via uma mesma rede, constituindo assim um ambiente de processamento distribuído. Os diferentes estudos de casos testados mostram que, para redes inteligentes de distribuição compostas por um único alimentador, a solução proposta obteve sucesso na reconfiguração da rede, indiferentemente do número de falhas simultâneas. Na implementação proposta, o tempo de reconfiguração da rede não depende do número de linhas nela incluídas. A implementação apresentou resultados de custo de comunicação e tempo dentro dos limites teóricos estabelecidos pelo algoritmo GHS.
Resumo:
Com o avanço no desenvolvimento e utilização de veículos e robôs autoequilibrantes, faz-se necessário a investigação de controladores capazes de atender os diversos desafios relacionados à utilização desses sistemas. Neste trabalho foi estudado o controle de equilíbrio e posição de um robô auto-equilibrante de duas rodas. O interesse particular nesta aplicação vem da sua estrutura e da riqueza de sua dinâmica física. Por ser um problema complexo e não trivial há grande interesse em avaliar os controladores inteligentes. A primeira parte da dissertação aborda o desenvolvimento de um controle clássico do tipo PID, para em seguida ser comparado com a implementação de dois tipos de controladores inteligentes: On-line Neuro Fuzzy Control (ONFC) e Proportional-Integral-Derivative Neural-Network (PIDNN). Também é apresentada a implementação dos controladores em uma plataforma de hardware, utilizando o kit LEGO Mindstorm, e numa plataforma de simulação utilizando o MATLAB-Simulink. Em seguida, dois estudos de casos são desenvolvidos visando comparar o desempenho dos controladores. O primeiro caso avalia o controle de equilíbrio e posição do robô auto-equilibrante de duas rodas sobre um terreno plano tendo como interesse observar o desempenho intrínseco do sistema sob ausência de fatores externos. O segundo caso estuda o controle de equilíbrio e posição do robô em terrenos irregulares visando investigar a resposta do sistema sob influência de condições adversas em seu ambiente. Finalmente, o desempenho de cada um dos controladores desenvolvidos é discutido, verificando-se resultados competitivos no controle do robô auto-equilibrante de duas rodas.
Auto-Oil Program Phase II Heavy Hydrocarbon Study: Analysis of Engine-Out Hydrocarbon Emissions Data
Resumo:
This paper will provide a rationale for developing control systems based on the availability of automated identification (Auto ID) information provision. Much of the Auto-ID research has to date focussed on developing the essential infrastructure for dynamically extracting, networking and storing product data. These developments will help to revolutionise the accuracy, quality and timeliness of data acquired by Business Information Systems and should lead to major cost savings and performance improvements as a result. This paper introduces an additional phase of Auto ID research and development in which the nature of control system decisions is reconsidered in the light of the availability of ubiquitous, unique, item-level information. The paper will: (i) Indicate why the availability of ubiquitous, unique, item-level data can enable enhanced and fundamentally different control approaches and highlight potential benefits from control systems incorporating this Auto ID data (ii) Demonstrate what is required to develop control systems based around the availability of Auto ID data. (iii) Outline the research challenges in determining how such systems will be developed.
Resumo:
Calibration of a camera system is a necessary step in any stereo metric process. It correlates all cameras to a common coordinate system by measuring the intrinsic and extrinsic parameters of each camera. Currently, manual calibration of a camera system is the only way to achieve calibration in civil engineering operations that require stereo metric processes (photogrammetry, videogrammetry, vision based asset tracking, etc). This type of calibration however is time-consuming and labor-intensive. Furthermore, in civil engineering operations, camera systems are exposed to open, busy sites. In these conditions, the position of presumably stationary cameras can easily be changed due to external factors such as wind, vibrations or due to an unintentional push/touch from personnel on site. In such cases manual calibration must be repeated. In order to address this issue, several self-calibration algorithms have been proposed. These algorithms use Projective Geometry, Absolute Conic and Kruppa Equations and variations of these to produce processes that achieve calibration. However, most of these methods do not consider all constraints of a camera system such as camera intrinsic constraints, scene constraints, camera motion or varying camera intrinsic properties. This paper presents a novel method that takes all constraints into consideration to auto-calibrate cameras using an image alignment algorithm originally meant for vision based tracking. In this method, image frames are taken from cameras. These frames are used to calculate the fundamental matrix that gives epipolar constraints. Intrinsic and extrinsic properties of cameras are acquired from this calculation. Test results are presented in this paper with recommendations for further improvement.