166 resultados para Attractor
Resumo:
We present a novel approach to computing the orientation moments and rheological properties of a dilute suspension of spheroids in a simple shear flow at arbitrary Peclct number based on a generalised Langevin equation method. This method differs from the diffusion equation method which is commonly used to model similar systems in that the actual equations of motion for the orientations of the individual particles are used in the computations, instead of a solution of the diffusion equation of the system. It also differs from the method of 'Brownian dynamics simulations' in that the equations used for the simulations are deterministic differential equations even in the presence of noise, and not stochastic differential equations as in Brownian dynamics simulations. One advantage of the present approach over the Fokker-Planck equation formalism is that it employs a common strategy that can be applied across a wide range of shear and diffusion parameters. Also, since deterministic differential equations are easier to simulate than stochastic differential equations, the Langevin equation method presented in this work is more efficient and less computationally intensive than Brownian dynamics simulations.We derive the Langevin equations governing the orientations of the particles in the suspension and evolve a procedure for obtaining the equation of motion for any orientation moment. A computational technique is described for simulating the orientation moments dynamically from a set of time-averaged Langevin equations, which can be used to obtain the moments when the governing equations are harder to solve analytically. The results obtained using this method are in good agreement with those available in the literature.The above computational method is also used to investigate the effect of rotational Brownian motion on the rheology of the suspension under the action of an external force field. The force field is assumed to be either constant or periodic. In the case of con- I stant external fields earlier results in the literature are reproduced, while for the case of periodic forcing certain parametric regimes corresponding to weak Brownian diffusion are identified where the rheological parameters evolve chaotically and settle onto a low dimensional attractor. The response of the system to variations in the magnitude and orientation of the force field and strength of diffusion is also analyzed through numerical experiments. It is also demonstrated that the aperiodic behaviour exhibited by the system could not have been picked up by the diffusion equation approach as presently used in the literature.The main contributions of this work include the preparation of the basic framework for applying the Langevin method to standard flow problems, quantification of rotary Brownian effects by using the new method, the paired-moment scheme for computing the moments and its use in solving an otherwise intractable problem especially in the limit of small Brownian motion where the problem becomes singular, and a demonstration of how systems governed by a Fokker-Planck equation can be explored for possible chaotic behaviour.
Resumo:
This is a sequel to our earlier work on the modulated logistic map. Here, we first show that the map comes under the universality class of Feigenbaum. We then give evidence for the fact that our model can generate strange attractors in the unit square for an uncountable number of parameter values in the range μ∞<μ<1. Numerical plots of the attractor for several values of μ are given and the self-similar structure is explicity shown in one case. The fractal and information dimensions of the attractors for many values of μ are shown to be greater than one and the variation in their structure is analysed using the two Lyapunov exponents of the system. Our results suggest that the map can be considered as an analogue of the logistic map in two dimensions and may be useful in describing certain higher dimensional chaotic phenomena.
Resumo:
Using laser transmission, the characteristics of hydrodynamic turbulence is studied following one of the recently developed technique in nonlinear dynamics. The existence of deterministic chaos in turbulence is proved by evaluating two invariants viz. dimension of attractor and Kolmogorov entropy. The behaviour of these invariants indicates that above a certain strength of turbulence the system tends to more ordered states.
Resumo:
A mathematical analysis of an electroencephalogram of a human Brain during an epileptic seizure shows that the K2 entropy decreases as compared to a clinically normal brain while the dimension of the attractor does not show significant deviation.
Resumo:
It has become clear over the last few years that many deterministic dynamical systems described by simple but nonlinear equations with only a few variables can behave in an irregular or random fashion. This phenomenon, commonly called deterministic chaos, is essentially due to the fact that we cannot deal with infinitely precise numbers. In these systems trajectories emerging from nearby initial conditions diverge exponentially as time evolves)and therefore)any small error in the initial measurement spreads with time considerably, leading to unpredictable and chaotic behaviour The thesis work is mainly centered on the asymptotic behaviour of nonlinear and nonintegrable dissipative dynamical systems. It is found that completely deterministic nonlinear differential equations describing such systems can exhibit random or chaotic behaviour. Theoretical studies on this chaotic behaviour can enhance our understanding of various phenomena such as turbulence, nonlinear electronic circuits, erratic behaviour of heart and brain, fundamental molecular reactions involving DNA, meteorological phenomena, fluctuations in the cost of materials and so on. Chaos is studied mainly under two different approaches - the nature of the onset of chaos and the statistical description of the chaotic state.
Resumo:
This thesis investigates the potential use of zerocrossing information for speech sample estimation. It provides 21 new method tn) estimate speech samples using composite zerocrossings. A simple linear interpolation technique is developed for this purpose. By using this method the A/D converter can be avoided in a speech coder. The newly proposed zerocrossing sampling theory is supported with results of computer simulations using real speech data. The thesis also presents two methods for voiced/ unvoiced classification. One of these methods is based on a distance measure which is a function of short time zerocrossing rate and short time energy of the signal. The other one is based on the attractor dimension and entropy of the signal. Among these two methods the first one is simple and reguires only very few computations compared to the other. This method is used imtea later chapter to design an enhanced Adaptive Transform Coder. The later part of the thesis addresses a few problems in Adaptive Transform Coding and presents an improved ATC. Transform coefficient with maximum amplitude is considered as ‘side information’. This. enables more accurate tfiiz assignment enui step—size computation. A new bit reassignment scheme is also introduced in this work. Finally, sum ATC which applies switching between luiscrete Cosine Transform and Discrete Walsh-Hadamard Transform for voiced and unvoiced speech segments respectively is presented. Simulation results are provided to show the improved performance of the coder
Resumo:
A recurrent iterated function system (RIFS) is a genaralization of an IFS and provides nonself-affine fractal sets which are closer to natural objects. In general, it's attractor is not a continuous surface in R3. A recurrent fractal interpolation surface (RFIS) is an attractor of RIFS which is a graph of bivariate continuous interpolation function. We introduce a general method of generating recurrent interpolation surface which are at- tractors of RIFSs about any data set on a grid.
Resumo:
The contribution of retinal flow (RF), extraretinal (ER), and egocentric visual direction (VD) information in locomotor control was explored. First, the recovery of heading from RF was examined when ER information was manipulated; results confirmed that ER signals affect heading judgments. Then the task was translated to steering curved paths, and the availability and veracity of VD were manipulated with either degraded or systematically biased RE Large steering errors resulted from selective manipulation of RF and VD, providing strong evidence for the combination of RF, ER, and VD. The relative weighting applied to RF and VD was estimated. A point-attractor model is proposed that combines redundant sources of information for robust locomotor control with flexible trajectory planning through active gaze.
Resumo:
In this paper, we study the global stability of the difference equation x(n) = a + bx(n-1) + cx(n-1)(2)/d - x(n-2), n = 1,2,....., where a, b greater than or equal to 0 and c, d > 0. We show that one nonnegative equilibrium point of the equation is a global attractor with a basin that is determined by the parameters, and every positive Solution of the equation in the basin exponentially converges to the attractor. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
The hypothesis of a low dimensional martian climate attractor is investigated by the application of the proper orthogonal decomposition (POD) to a simulation of martian atmospheric circulation using the UK Mars general circulation model (UK-MGCM). In this article we focus on a time series of the interval between autumn and winter in the northern hemisphere, when baroclinic activity is intense. The POD is a statistical technique that allows the attribution of total energy (TE) to particular structures embedded in the UK-MGCM time-evolving circulation. These structures are called empirical orthogonal functions (EOFs). Ordering the EOFs according to their associated energy content, we were able to determine the necessary number to account for a chosen amount of atmospheric TE. We show that for Mars a large fraction of TE is explained by just a few EOFs (with 90% TE in 23 EOFs), which apparently support the initial hypothesis. We also show that the resulting EOFs represent classical types of atmospheric motion, such as thermal tides and transient waves. Thus, POD is shown to be an efficient method for the identification of different classes of atmospheric modes. It also provides insight into the non-linear interaction of these modes.
Resumo:
Starting from the classical Saltzman two-dimensional convection equations, we derive via a severe spectral truncation a minimal 10 ODE system which includes the thermal effect of viscous dissipation. Neglecting this process leads to a dynamical system which includes a decoupled generalized Lorenz system. The consideration of this process breaks an important symmetry and couples the dynamics of fast and slow variables, with the ensuing modifications to the structural properties of the attractor and of the spectral features. When the relevant nondimensional number (Eckert number Ec) is different from zero, an additional time scale of O(Ec−1) is introduced in the system, as shown with standard multiscale analysis and made clear by several numerical evidences. Moreover, the system is ergodic and hyperbolic, the slow variables feature long-term memory with 1/f3/2 power spectra, and the fast variables feature amplitude modulation. Increasing the strength of the thermal-viscous feedback has a stabilizing effect, as both the metric entropy and the Kaplan-Yorke attractor dimension decrease monotonically with Ec. The analyzed system features very rich dynamics: it overcomes some of the limitations of the Lorenz system and might have prototypical value in relevant processes in complex systems dynamics, such as the interaction between slow and fast variables, the presence of long-term memory, and the associated extreme value statistics. This analysis shows how neglecting the coupling of slow and fast variables only on the basis of scale analysis can be catastrophic. In fact, this leads to spurious invariances that affect essential dynamical properties (ergodicity, hyperbolicity) and that cause the model losing ability in describing intrinsically multiscale processes.
Resumo:
This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman filtering) and numerical weather forecasting. In the first part, the recently formulated Ensemble Kalman-Bucy (EnKBF) filter is revisited. It is shown that the previously used numerical integration scheme fails when the magnitude of the background error covariance grows beyond that of the observational error covariance in the forecast window. Therefore, we present a suitable integration scheme that handles the stiffening of the differential equations involved and doesn’t represent further computational expense. Moreover, a transform-based alternative to the EnKBF is developed: under this scheme, the operations are performed in the ensemble space instead of in the state space. Advantages of this formulation are explained. For the first time, the EnKBF is implemented in an atmospheric model. The second part of this work deals with ensemble clustering, a phenomenon that arises when performing data assimilation using of deterministic ensemble square root filters in highly nonlinear forecast models. Namely, an M-member ensemble detaches into an outlier and a cluster of M-1 members. Previous works may suggest that this issue represents a failure of EnSRFs; this work dispels that notion. It is shown that ensemble clustering can be reverted also due to nonlinear processes, in particular the alternation between nonlinear expansion and compression of the ensemble for different regions of the attractor. Some EnSRFs that use random rotations have been developed to overcome this issue; these formulations are analyzed and their advantages and disadvantages with respect to common EnSRFs are discussed. The third and last part contains the implementation of the Robert-Asselin-Williams (RAW) filter in an atmospheric model. The RAW filter is an improvement to the widely popular Robert-Asselin filter that successfully suppresses spurious computational waves while avoiding any distortion in the mean value of the function. Using statistical significance tests both at the local and field level, it is shown that the climatology of the SPEEDY model is not modified by the changed time stepping scheme; hence, no retuning of the parameterizations is required. It is found the accuracy of the medium-term forecasts is increased by using the RAW filter.
Resumo:
This study is concerned with how the attractor dimension of the two-dimensional Navier–Stokes equations depends on characteristic length scales, including the system integral length scale, the forcing length scale, and the dissipation length scale. Upper bounds on the attractor dimension derived by Constantin, Foias and Temam are analysed. It is shown that the optimal attractor-dimension estimate grows linearly with the domain area (suggestive of extensive chaos), for a sufficiently large domain, if the kinematic viscosity and the amplitude and length scale of the forcing are held fixed. For sufficiently small domain area, a slightly “super-extensive” estimate becomes optimal. In the extensive regime, the attractor-dimension estimate is given by the ratio of the domain area to the square of the dissipation length scale defined, on physical grounds, in terms of the average rate of shear. This dissipation length scale (which is not necessarily the scale at which the energy or enstrophy dissipation takes place) can be identified with the dimension correlation length scale, the square of which is interpreted, according to the concept of extensive chaos, as the area of a subsystem with one degree of freedom. Furthermore, these length scales can be identified with a “minimum length scale” of the flow, which is rigorously deduced from the concept of determining nodes.
Resumo:
The North Atlantic eddy-driven jet is a major component of the large-scale flow in the northern hemisphere. Here we present evidence from reanalysis and ensemble forecast data for systematic flow-dependent predictability of the jet during northern hemisphere winter (DJF). It is found that when the jet is weakened or split it is both less persistent and less predictable. The lack of predictability manifests itself as the onset of an anomalously large instantaneous rate of spread of ensemble forecast members as the jet becomes weakened. This suggests that as the jet weakens or splits it enters into a state more sensitive to small differences between ensemble forecast members, rather like the sensitive region between the wings of the Lorenz attractor.
Resumo:
Numerical climate models constitute the best available tools to tackle the problem of climate prediction. Two assumptions lie at the heart of their suitability: (1) a climate attractor exists, and (2) the numerical climate model's attractor lies on the actual climate attractor, or at least on the projection of the climate attractor on the model's phase space. In this contribution, the Lorenz '63 system is used both as a prototype system and as an imperfect model to investigate the implications of the second assumption. By comparing results drawn from the Lorenz '63 system and from numerical weather and climate models, the implications of using imperfect models for the prediction of weather and climate are discussed. It is shown that the imperfect model's orbit and the system's orbit are essentially different, purely due to model error and not to sensitivity to initial conditions. Furthermore, if a model is a perfect model, then the attractor, reconstructed by sampling a collection of initialised model orbits (forecast orbits), will be invariant to forecast lead time. This conclusion provides an alternative method for the assessment of climate models.