997 resultados para Atomic decomposition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In information retrieval (IR) research, more and more focus has been placed on optimizing a query language model by detecting and estimating the dependencies between the query and the observed terms occurring in the selected relevance feedback documents. In this paper, we propose a novel Aspect Language Modeling framework featuring term association acquisition, document segmentation, query decomposition, and an Aspect Model (AM) for parameter optimization. Through the proposed framework, we advance the theory and practice of applying high-order and context-sensitive term relationships to IR. We first decompose a query into subsets of query terms. Then we segment the relevance feedback documents into chunks using multiple sliding windows. Finally we discover the higher order term associations, that is, the terms in these chunks with high degree of association to the subsets of the query. In this process, we adopt an approach by combining the AM with the Association Rule (AR) mining. In our approach, the AM not only considers the subsets of a query as “hidden” states and estimates their prior distributions, but also evaluates the dependencies between the subsets of a query and the observed terms extracted from the chunks of feedback documents. The AR provides a reasonable initial estimation of the high-order term associations by discovering the associated rules from the document chunks. Experimental results on various TREC collections verify the effectiveness of our approach, which significantly outperforms a baseline language model and two state-of-the-art query language models namely the Relevance Model and the Information Flow model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Load in distribution networks is normally measured at the 11kV supply points; little or no information is known about the type of customers and their contributions to the load. This paper proposes statistical methods to decompose an unknown distribution feeder load to its customer load sector/subsector profiles. The approach used in this paper should assist electricity suppliers in economic load management, strategic planning and future network reinforcements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from Mahogany seeds. The major components of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collectors. The Mahogany seed in particle form is pyrolysed in an externally heated 10 cm diameter and 36 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 450oC to 600oC. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. A maximum liquid yield of 54wt% of biomass feed is obtained with particle size of 1.18 mm at a reactor bed temperature of 5500C with a running time of 90 minutes. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 39.9 MJ/kg which is higher than other biomass derived pyrolysis oils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of distribution utilities do not have accurate information on the constituents of their loads. This information is very useful in managing and planning the network, adequately and economically. Customer loads are normally categorized in three main sectors: 1) residential; 2) industrial; and 3) commercial. In this paper, penalized least-squares regression and Euclidean distance methods are developed for this application to identify and quantify the makeup of a feeder load with unknown sectors/subsectors. This process is done on a monthly basis to account for seasonal and other load changes. The error between the actual and estimated load profiles are used as a benchmark of accuracy. This approach has shown to be accurate in identifying customer types in unknown load profiles, and is used in cross-validation of the results and initial assumptions.