976 resultados para Atomic collisions


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-photon resonances of atomic hydrogen (? = 2 × 205.1 nm), atomic nitrogen (? = 2 × 206.6 nm) and atomic oxygen (? = 2 × 225.6 nm) are investigated together with two selected transitions in krypton (? = 2×204.2 nm) and xenon (? = 2×225.5 nm). The natural lifetimes of the excited states, quenching coefficients for the most important collisions partners, and the relevant ratios of the two-photon excitation cross sections are measured. These data can be applied to provide a calibration for two-photon laser-induced fluorescence measurements based on comparisons with spectrally neighbouring noble gas resonances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reported are total, absolute charge-exchange cross sections for collisions of 3He(2+) ions with He and H-2. Measurements are reported at fixed energies between 0.33 and 4.67 keV/amu. Both the present results and earlier results of others are analyzed in terms of available experimental small-angle differential cross sections as a function of collision energy, and hence the geometry of the exit aperture of the gas-collision cells used by the various experimental groups. In addition, the effective length of gas-collision cells is studied using fluid dynamic and molecular flow simulations to address the density patterns near the cell entrance and exit apertures. When small acceptance-angle corrections were applied, the results of present and previous measurements for the single electron capture in these systems were brought into good accord in the relevant energy ranges. Taken in their entirety, the present data for 3He(2+) with He and H-2 lend themselves to new theoretical calculations of the multichannel charge-exchange cross sections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experimental advances in light technology necessitate the availability of sophisticated theoretical models which can incorporate an accurate treatment of double-electron continua. We describe here a new intermediate-energy R-matrix approach to photoionisation and photo-double-ionisation and illustrate its feasibilty by application to photoionisation and photo-double-ionisation of He, and photodetachment and photo-double-detachment of H-. Results are shown to be in excellent agreement with previous theoretical and experimental studies. This work is a key step in the development of a multipurpose R-matrix code for multiple-electron ejection. © 2012 American Physical Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the deployment on GPUs of PROP, a program of the 2DRMP suite which models electron collisions with H-like atoms and ions. Because performance on GPUs is better in single precision than in double precision, the numerical stability of the PROP program in single precision has been studied. The numerical quality of PROP results computed in single precision and their impact on the next program of the 2DRMP suite has been analyzed. Successive versions of the PROP program on GPUs have been developed in order to improve its performance. Particular attention has been paid to the optimization of data transfers and of linear algebra operations. Performance obtained on several architectures (including NVIDIA Fermi) are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate and analyze Feshbach resonance spectra for ultracold Yb(1S0)+Yb(3P2) collisions as a function of an interatomic potential scaling factor λ and external magnetic field. We show that, at zero field, the resonances are distributed randomly in λ, but that signatures of quantum chaos emerge as a field is applied. The random zero-field distribution arises from superposition of structured spectra associated with individual total angular momenta. In addition, we show that the resonances with respect to magnetic field in the experimentally accessible range of 400 to 2000 G are chaotically distributed, with strong level repulsion that is characteristic of quantum chaos.