993 resultados para Atomic Force


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic force microscopy (AFM) measurements of nanometer-sized islands formed by 2 monolayers of InAs by molecular beam epitaxy have been carried out and the scan line of individual islands was extracted from raw AFM data for investigation. It is found that the base widths of nanometer-sized islands obtained by AFM are not reliable due to the finite size and shape of the contacting probe. A simple model is proposed to analyze the deviation of the measured value From the real value of the base width of InAs islands. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic force microscopy and photoluminescence spectroscopy (PL) has been used to study asymmetric bilayer InAs quantum dot (QD) structures grow by molecular-beam epitaxy on GaAs (001) substrates. The two InAs layers were separated by a 7-nm-thick GaAs spacer layer and were grown at different substrate temperature. We took advantage of the intrinsic nonuniformity of the molecular beams to grow the seed layer with an average InAs coverage of 2.0 ML. Then the seed layer thickness could be divided into three areas: below, around and above the critical thickness of the 2D-3D transition along the 11101 direction of the substrate. Correspondingly, the nucleation mechanisms of the upper InAs layer (UIL) could be also divided into three areas: temperature-controlled, competition between temperature-controlled and strain-induced, and strain-induced (template-controlled) nucleation. Small quantum dots (QDs) with a large density around 5 x 10(10) cm(-2) are found in the temperature-controlled nucleation area. The QD size distributions undergo a bimodal to a unimodal transition with decreasing QD densities in the strain-induced nucleation area, where the QD densities vary following that of the seed layer (templating effect). The optimum QD density with the UIL thickness fixed at 2.4 ML is shown to be around 1.5 x 10(10) cm(-2), for which the QD size distribution is unimodal and PL emission peaks at the longest wavelength. The QDs in the in-between area exhibit a broad size distribution with small QDs and strain-induced large QDs coexisting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The size and distribution of surface features of porous silicon layers have been investigated by scanning tunneling and atomic force microscopy. Pores and hillocks down to 1-2 nm size were observed, with their shape and distribution on the sample surface being influenced by crystallographic effects. The local density of electronic states show a strong increase above 2 eV, in agreement with recent theoretical predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dependence of electron conduction of oligo(1,4-phenylene ethynylene)s (OPEs) on length, terminal group, and main chain structure was examined by conductive probe-atomic force microscopy (CP-AFM) via a metal substrate-molecular wire monolayer-conductive probe junction. The electron transport in the molecular junction was a highest occupied molecule orbital (HOMO)-mediated process following a coherent, non-resonant tunneling mechanism represented by the Simmons equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The assembly and disassembly of RecA-DNA nucleoprotein filaments on double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA) are important steps for homologous recombination and DNA repair. The assembly and disassembly of the nucleoprotein filaments are sensitive to the reaction conditions. In this work, we investigated different morphologies of the formed nucleoprotein filaments at low temperature under different solution conditions by atomic force microscopy (AFM). We found that low temperature and long keeping time could induce the incomplete disassembly of the formed nucleoprotein filaments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a simple method for the label-free detection of double-stranded DNA using surface-enhanced Raman scattering (SERS). We prepared cetyltrimethylammonium bromide (CTAB)-capped silver nanoparticles and a DNA-nanoparticle complex by adding silver nanoparticles to lambda-DNA solutions. In the present study, the utilization of CTAB-capped silver nanoparticles facilitates the electrostatic interaction between DNA molecules and silver nanoparticles; at the same time, the introduction of DNA avoids adding aggregating agent for the formation of nanoparticle aggregates to obtain large enhancement of DNA, because the DNA acts as both the probe molecules and aggregating agent of Ag nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-scale, uniform plasmid deoxyribonucleic acid (DNA) network has been successfully constructed on 11-mercaptoundecanoic acid modified gold (111) surface using a self-assembly technique. The effect of DNA concentration on the characteristics of the DNA network was investigated by atomic force microscopy. It was found that the size of meshes and the height of fibers in the DNA network could be controlled by varying the concentration of DNA with a constant time of assembly of 24 h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, atomic force microscopy (AFM) has been used to study the assembly of protein lysozyme on DNA molecule. Based on the electrostatic interaction, the positively charged lysozyme can easily bind onto the negatively charged DNA molecule surface. The protein molecules appear as globular objects on the DNA scaffold, which are distinguishable in the AFM images. At the same time, lysozyme molecules can be assembled onto DNA as dense or sporadic pattern by varying the protein concentration. This work may provide fundamental aspects for building protein nanostructures and studying of DNA-protein interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A circular bacterial artificial chromosome of 148.9 kbp on human chromosome 3 has been extended and fixed on bare mica substrates using a developed fluid capillary flow method in evaporating liquid drops. Extended circular DNA molecules were imaged with an atomic force microscope (AFM) under ambient conditions. The measured total lengths of the whole DNA molecules were in agreement with sequencing analysis data with an error range of +/-3.6%. This work is important groundwork for probing single nucleotide polymorphisms in the human genome, mapping genomic DNA, manipulating biomolecular nanotechnology, and studying the interaction of DNA-protein complexes investigated by AFM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption behavior of methanol, ethanol, n-butanol, n-hexanol and n-octanol on mica surface was investigated by atomic force microscopy. All these alcohols have formed homogeneous films with different characteristics. Upright standing bilayer structure was formed on methanol adsorbed mica surface. For ethanol, bilayer structure and monolayer one were simultaneously formed, while for n-butanol and n-hexanol, rough films were observed. What was formed for n-octanol? Close-packed flat film was observed on n-octanol adsorbed mica substrate, the film was assumed to be a tilted monolayer. The possible adsorption model for each alcohol molecule was proposed according to its adsorption behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have fabricated DNA network structures on glass and sapphire substrates. As a comparison, we also formed the network structure on mica substrate. For titanate strontium substrate, however, DNA network can not be obtained even if it is wet-treated by Na2HPO4 solution to make it hydrophilic. We also discuss the factors that affect the DNA networks formed on various substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxdiazole (PBD) is a good electron-transporting material and can form single crystals from solution. In this work, solution cast PBD single crystals with different crystallographic axes (b, c) perpendicular to the Au/S substrates in large area are achieved by controlling the rate of solvent evaporation in the presence and absence of external electrostatic field, respectively. The orientation of these single crystals on Au/S substrate was characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Conducting probe atomic force microscopy (CP-AFM) was used to measure the charge transport characteristics of PBD single crystals grown on Au/S substrates. Transport was measured perpendicular to the substrate between the CP-AFM tip and the Au/S substrate. The electron mobility of 3 x 10(-3) cm(2)/(V s) for PBD single crystal along crystallographic b-axis is determined. And the electron mobility of PBD single crystal along the c-axis is about 2 orders of magnitude higher than that along the b-axis due to the anisotropic charge transport at the low voltage region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleation of calcium phosphate on the substrate of steatic acid Langmuir-blodgett film at the initial stage was investigated by atomic force microscopy. Nano-dots, nano-wires and nano-islands were observed in sequence for the first time, reflecting the nucleation of calcium phosphate and the molecular arrangement of carboxylic layer. The nucleation rates perpendicular and parallel to the carboxylic terminal group were estimated from the height and diameter of the calcium phosphate crystals, respectively. And this stage was distinct from the late explosive grown stage, in which the change of the morphology was not obvious. The approaches based on this discovery would lead to the development of new strategies in the controlled synthesis of inorganic nano-phases and the assembly of organized composite and ceramic materials.