70 resultados para Athymic
Resumo:
Although both CD4+ and CD8+ T cells are clearly required to generate long-lasting anti-tumor immunity induced by s.c. vaccination with interleukin 2 (IL-2)-transfected, irradiated M-3 clone murine melanoma cells, some controversy continues about the site and mode of T-cell activation in this system. Macrophages, granulocytes, and natural killer cells infiltrate the vaccination site early after injection into either syngeneic euthymic DBA/2 mice or athymic nude mice and eliminate the inoculum within 48 hr. We could not find T cells at the vaccination site, which argues against the concept that T-cell priming by the IL-2-secreting cancer cells occurs directly at that location. However, reverse transcription-PCR revealed transcripts indicative of T-cell activation and expansion in the draining lymph nodes of mice immunized with the IL-2-secreting vaccine but not in mice vaccinated with untransfected, irradiated M-3 cells. We therefore propose that the antigen-presenting cells, which invade the vaccination site, process tumor-derived antigens and, subsequently, initiate priming of tumor-specific T lymphocytes in lymphoid organs. These findings suggest a three-stage process for the generation of effector T cells after vaccination with IL-2-secreting tumor cells: (i) tumor-antigen uptake and processing at the site of injection by antigen-presenting cells, (ii) migration of antigen-presenting cells into the regional draining lymph nodes, where T-cell priming occurs, and (iii) circulation of activated T cells that either perform or initiate effector mechanisms leading to tumor cell destruction.
Resumo:
Amplification and overexpression of the erbB-2/neu protooncogene are frequently associated with aggressive clinical course of certain human adenocarcinomas, and therefore the encoded surface glycoprotein is considered a candidate target for immunotherapy. We previously generated a series of anti-ErbB-2 monoclonal antibodies (mAbs) that either accelerate or inhibit the tumorigenic growth of erbB-2-transformed murine fibroblasts. The present study extended this observation to a human tumor cell line grown as xenografts in athymic mice and addressed the biochemical differences between the two classes of mAbs. We show that the inhibitory effect is dominant in an antibody mixture, and it depends on antibody bivalency. By using radiolabeled mAbs we found that all of three tumor-inhibitory mAbs became rapidly inaccessible to acid treatment when incubated with tumor cells. However, a tumor-stimulatory mAb remained accessible to extracellular treatments, indicating that it did not undergo endocytosis. In addition, intracellular fragments of the inhibitory mAbs, but not of the stimulatory mAb, were observed. Electron microscopy of colloidal gold-antibody conjugates confirmed the absence of endocytosis of the stimulatory mAb but detected endocytic vesicles containing an inhibitory mAb. We conclude that acceleration of cell growth by ErbB-2 correlates with cell surface localization, whereas inhibition of tumor growth is associated with an intrinsic ability of anti-ErbB-2 mAbs to induce endocytosis. These conclusions are relevant to the selection of optimal mAbs for immunotherapy and may have implications for the mechanism of cellular transformation by an overexpressed erbB-2 gene.
Resumo:
BACKGROUND: Hydrops foetalis is defined as excessive fluid accumulation within the foetal extravascular compartments and body cavities. It has been described in human and veterinary medicine, but despite several descriptive studies its aetiology is still not fully clarified. Pulmonary hypoplasia and anasarca (PHA) syndrome is a rare congenital abnormality in cattle that is characterised by hydrops foetalis including extreme subcutaneous oedema (anasarca) and undeveloped or poorly formed lungs (pulmonary hypoplasia). Until now, sporadic cases of PHA were reported in cattle breeds like Australian Dexter, Belted Galloway, Maine-Anjou, and Shorthorn. This report describes the first known cases of PHA syndrome in Slovenian Cika cattle. CASE PRESENTATION: A 13-year-old cow aborted a male calf in the seventh month of pregnancy, while a male calf was delivered by caesarean section on the due date from a 14-year-old cow. The pedigree analysis showed that the calves were sired by the same bull, the dams were paternal half-sisters and the second calf was the product of a dam-son mating. Gross lesions were similar in both cases and characterized by severe anasarca, hydrothorax, hydropericardium, ascites, hypoplastic lungs, absence of lymph nodes, and an enlarged heart. The first calf was also athymic. Histopathology of the second affected calf confirmed severe oedema of the subcutis and interstitium of the organs, and pulmonary hypoplasia. The lymph vessels in the subcutis and other organs were severely dilated. Histopathology of the second calf revealed also lack of bronchus associated lymphoid tissue and adrenal gland hypoplasia. CONCLUSIONS: The findings were consistent with known forms of the bovine PHA syndrome. This is the first report of the PHA syndrome occurring in the local endangered breed of Cika cattle. Observed inbreeding practice supports that this lethal defect most likely follows an autosomal recessive mode of inheritance. In the light of the disease phenotype it is assumed that a mutation causing an impaired development of lymph vessels is responsible for the hydrops foetalis associated malformations in bovine PHA.
Resumo:
Increased expression of the epithelial mucin MUC1 has been linked to tumor aggressiveness in human breast carcinoma. Recent studies have demonstrated that overexpression of MUC1 interferes with cell-substrate and cell-cell adhesion by masking cell surface integrins and E-cadherin. Additionally, the cytoplasmic tail of MUC1 is involved in signal transduction and interactions with catenins. In the present study, we have examined the in vitro expression of MUC1 mRNA and protein in a panel of 14 human breast cancer cell lines using northern blotting, western blotting, immunocytochemistry, and flow cytometry. Considerable variability of expression was noted not only between cell lines but also within several individual lines. Many cell lines such as BT 20, KPL-1, and T47D expressed abundant MUC1 whilst others such as MDA-MB-231 and MCF-7 showed intermediate expression, and MDA-MB-435 and MDA-MB-453 expressed very low levels. Low levels of MUC1 expression were associated with decreased expression of cytokeratin and increased expression of vimentin. Additionally, 12 of the cell lines were established as xenografts in immunocompromised (SCID) mice, and MUC1 expression in both the primary tumors as well as metastases was assessed immunohistochemically. In general, in vivo expression mirrored in vitro expression, although there was reduced in vivo expression in T47D and ZR-75-1 xenografts. Although we showed no correlation between tumorigenicity or metastasis and MUC1 expression, this study will assist development of experimental models to assess the influence of MUC1 of on breast cancer progression.
Resumo:
Improved methods of insulin delivery are required for the treatment of insulin-dependent diabetes mellitus (IDDM) to achieve a more physiological profile of glucose homeostasis. Somatic cell gene therapy offers the prospect that insulin could be delivered by an autologous cell implant, engineered to secrete insulin in response to glucose. This study explores the feasibility of manipulating somatic cells to behave as a surrogate insulin-secreting β-cells. Initial studies were conducted using mouse pituitary AtT20 cells as a model, since these cells possess an endogenous complement of enzymes capable of processing proinsulin to mature insulin. Glucose sensitive insulin secretion was conferred to these cells by transfection with plasmids containing the human preproinsulin gene (hppI-1) and the GLUT2 gene for the glucose transporter isoform 2. Insulin secretion was responsive to changes in the glucose concentration up to about 50μM. Further studies to up-rate this glucose sensitivity into the mM range will require manipulation of the hexokinase and glucokinase enzymes. Intraperitoneal implantation of the manipulated AtT20 cells into athymic nude mice with streptozotocin-induced diabetes resulted in decreased plasma glucose concentrations. The cells formed vascularised tumours in vivo which were shown to contain insulin-secreting cells. To achieve proinsulin processing in non-endocrine cells, co-transfection with a suitable enzyme, or mutagenesis of the proinsulin itself are necessary. The mutation of the human preproinsulin gene to the consensus sequence for cleavage by the subtilisin-like serine protease, furin, was carried out. Co-transfection of human fibroblasts with wild-type proinsulin and furin resulted in 58% conversion to mature insulin by these cells. Intraperitoneal implantation of the mature-insulin secreting human fibroblasts into the diabetic nude mouse animal model gave less encouraging results than the AtT20 cells, apparently due to poor vascularisation. Cell aggregations removed from the mice at autopsy were shown to contain insulin secreting cells only at the periphery. This thesis provides evidence that it is possible to construct, by cellular engineering, a glucose-sensitive insulin-secreting surrogate β-cell. Therefore, somatic cell gene therapy offers a feasible alternative for insulin delivery in IDDM patients.
Resumo:
The preparation and characterisation of collagen: PCL, gelatin: PCL and gelatin/collagen:PCL biocomposites for manufacture of tissue engineered skin substitutes are reported. Films of collagen: PLC, gelatin: PCL (1:4, 1:8 and 1:20 w/w) and gelatin/collagen:PCL (1:8 and 1:20 w/w) biocomposites were prepared by impregnation of lyophilised collagen and/or gelatin mats by PCL solutions followed by solvent evaporation. In vitro assays of total protein release of collagen:PCL and gelatin: PCL biocomposite films revealed an expected inverse relationship between the collagen release rate and the content of synthetic polymer in the biocomposite samples that may be exploited for controlled presentation and release of biopharmaceuticals such as growth factors. Good compatibility of all biocomposite groups was proven by interaction with 3T3 fibroblasts, normal human epidermal keratinocytes (NHEK), and primary human epidermal keratinocytes (PHEK) and dermal fibroblasts (PHDF) in vitro respectively. The 1:20 collagen: PCL materials exhibiting good cell growth curves and mechanical characteristics were selected for engineering of skin substitutes in this work. The tissue-engineered skin model based on single-donor PHEK and PHDF with differentiated confluent epidermal layer and fibrous porous dermal layer was then developed successfully in vitro proven by SEM and immunohistochemistry assay. The following in vivo animal study on athymic mice revealed early complete wound healing in 10 days and good integration of co-cultured skin substitutes with adjacent mice skin structures. Thus the co-cultured skin substitutes based on 1:20 collagen: PCL biocomposite membranes was proven in principle. The approach to skin modelling reported here may find application in wound treatment, gene therapy and screening of new pharmaceuticals.
Resumo:
Protein kinase C (PKC) is considered to be the major receptor for tumour promoting phorbol esters such as 12-0- tetradecanoylphorbol-13-acetate (TPA). These agents evoke a plethora of biological effects on cells in culture. The growth of A549 human lung carcinoma cells maintained in medium fortified with 10% foetal calf serum (FCS) is arrested for 6 days by TPA and other biologically active phorbol esters. In the work described in this thesis, the hypothesis was tested that modulation of PKC activity is closely related to events pivotal for cytostasis to occur. The effect of several phorbol esters, of newly synthesized analogues of diacylglycerols (DAG) and of bryostatins (bryos) on cell growth and ability to modulate activity of PKC has been investigated.Determination of the subcellular distribution of PKC following treatment of cells with TPA and partial enzyme purification by non-denaturing poly-acrylamide gel electrophoresis revealed translocation of enzyme activity from cytosoUc to paniculate fraction. Chronic exposure of cells to TPA resulted in a time and concentration dependent degradation of enzyme activity. Synthetic DAG and DAG analogues, unable to arrest the growth of cells at non-toxic concentrations, were neither able to affect subcellular PKC distribution nor compete effectively for phorbol ester binding sites at physiologically relevant concentrations. Bryos 1,2,4 and 5, natural products, possessing antineoplastic activity in mice, elicited transient arrest of A549 cell growth in vitro. They successfully competed for phorbol ester receptors in A549 cells with exquisite affinity and induced a shift in sub-cellular PKC distribution, though not to the same extent as PTA. Enzyme down-regulation resulted from prolonged exposure of cells to nanomolar concentrations of bryos. In vivo studies demonstrated that neither PDBu nor bryo 1 was able to inhibit A549 xenograft growth in athymic mice. The growth of A549 cell populations cultured under conditions of serum-deprivation was inhibited only transiently by biologically active phorbol esters. Fortification of serum-free medium with EGF or fetuin was able to partially restore sensitivity to maintained growth arrest by PTA. PKC translocation to the paniculate cellular fraction and subsequent enzyme down-regulation, induced by TPA, occurred in a manner similar to that observed in serum-supplemented cells. However, total PKC activity and cytosolic phorbol ester binding potential were greatly reduced in the serum-deprived cell population. Western blot analysis using monospecific monoclonal antibodies revealed the presence of PKC-a in both A549 cell populations, with significantly reduced protein levels in serum- deprived cells. PKC-/9 was not detected in either cell population.
Resumo:
Currently available treatments for insulin-dependent diabetes mellitus are often inadequate in terms of both efficacy and patient compliance. Gene therapy offers the possibility of a novel and improved method by which exogenous insulin can be delivered to a patient. This was approached in the present study by constructing a novel insulin-secreting cell line. For the purposes of this work immortalized cell lines were used. Fibroblasts and pituitary cells were transfected with the human preproisinulin gene to create stable lines of proinsulin- and insulin-secreting cells. The effect of known β-cell secretagogues on these cells were investigated, and found mostly to have no stimulatory effect, although IBMX, arginine and ZnSO4 each increased the rate of secretion. Cyclosporin (CyA) is currently the immunosuppresant of choice for transplant recipients; the effect of this treatment on endogenous β-cell function was assessed both in vivo and in vitro. Therapeutic doses of CyA were found to reduce plasma insulin concentrations and to impair glucose tolerance. The effect of immunoisolation on insulin release by HIT T15 cells was also investigated. The presence of an alginate membrane was found to severely impair insulin release. For the first implantation of the insulin-secreting cells, the animal model selected was the athymic nude mouse. This animal is immunoincompetent, and hence the use of an immunosuppressive regimen is circumvented. Graft function was assessed by measurement of plasma human C peptide concentrations, using a highly specific assay. Intraperitoneal implantation of genetically manipulated insulin-secreting pituitary cells into nude mice subsequently treated with a large dose of streptozotocin (STZ) resulted in a significantly delayed onset of hyperglycaemia when compared to control animals. Consumption of a ZnSO4 solution was shown to increase human C peptide release by the implant. Ensuing studies in nude mice examined the efficacy of different implantation sites, and included histochemical examination of the tumours. Aldehyde fuchsin staining and immunocytochemical processing demonstrated the presence of insulin containing cells within the excised tissue. Following initial investigations in nude mice, implantation studies were performed in CyA-immunosuppressed normal and STZ-diabetic mice. Graft function was found to be less efficacious, possibly due to the subcutaneous implantation site, or to the immunosuppresive regimen. Histochemical and transmission electron microscopic analysis of the tumour-like cell clusters found at autopsy revealed necrosis of cells at the core, but essentially normal cell morphology, with dense secretory granules in peripheral cells. The thesis provides evidence that gene therapy offers a feasibly new approach to insulin delivery.
Resumo:
Background - Carbon monoxide, the gaseous product of heme oxygenase, is a signalling molecule with a broad spectrum of biological activities. The aim of this study was to investigate the effects of carbon monoxide on proliferation of human pancreatic cancer. Methods - In vitro studies were performed on human pancreatic cancer cells (CAPAN-2, BxPc3, and PaTu-8902) treated with a carbon monoxide-releasing molecule or its inactive counterpart, or exposed to carbon monoxide gas (500 ppm/24 h). For in vivo studies, pancreatic cancer cells (CAPAN-2/PaTu-8902) were xenotransplanted subcutaneously into athymic mice, subsequently treated with carbon monoxide-releasing molecule (35 mg/kg b.w. i.p./day), or exposed to safe doses of carbon monoxide (500 ppm 1 h/day; n = 6 in each group). Results - Both carbon monoxide-releasing molecule and carbon monoxide exposure significantly inhibited proliferation of human pancreatic cancer cells (p < 0.05). A substantial decrease in Akt phosphorylation was observed in carbon monoxide-releasing molecule compared with inactive carbon monoxide-releasing molecule treated cancer cells (by 30–50%, p < 0.05). Simultaneously, carbon monoxide-releasing molecule and carbon monoxide exposure inhibited tumour proliferation and microvascular density of xenotransplanted tumours (p < 0.01), and doubled the survival rates (p < 0.005). Exposure of mice to carbon monoxide led to an almost 3-fold increase in carbon monoxide content in tumour tissues (p = 0.006). Conclusion - These data suggest a new biological function for carbon monoxide in carcinogenesis, and point to the potential chemotherapeutic/chemoadjuvant use of carbon monoxide in pancreatic cancer.
Resumo:
Background: Carbon monoxide, the gaseous product of heme oxygenase, is a signalling molecule with a broad spectrum of biological activities. The aim of this study was to investigate the effects of carbon monoxide on proliferation of human pancreatic cancer. Methods: In vitro studies were performed on human pancreatic cancer cells (CAPAN-2, BxPc3, and PaTu-8902) treated with a carbon monoxide-releasing molecule or its inactive counterpart, or exposed to carbon monoxide gas (500. ppm/24. h). For in vivo studies, pancreatic cancer cells (CAPAN-2/PaTu-8902) were xenotransplanted subcutaneously into athymic mice, subsequently treated with carbon monoxide-releasing molecule (35. mg/kg b.w. i.p./day), or exposed to safe doses of carbon monoxide (500. ppm 1. h/day; n=. 6 in each group). Results: Both carbon monoxide-releasing molecule and carbon monoxide exposure significantly inhibited proliferation of human pancreatic cancer cells (p<0.05). A substantial decrease in Akt phosphorylation was observed in carbon monoxide-releasing molecule compared with inactive carbon monoxide-releasing molecule treated cancer cells (by 30-50%, p<. 0.05). Simultaneously, carbon monoxide-releasing molecule and carbon monoxide exposure inhibited tumour proliferation and microvascular density of xenotransplanted tumours (p<0.01), and doubled the survival rates (p<0.005). Exposure of mice to carbon monoxide led to an almost 3-fold increase in carbon monoxide content in tumour tissues (p=0.006). Conclusion: These data suggest a new biological function for carbon monoxide in carcinogenesis, and point to the potential chemotherapeutic/chemoadjuvant use of carbon monoxide in pancreatic cancer. © 2013 Editrice Gastroenterologica Italiana S.r.l.