947 resultados para Asymptotic Formulas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the asymptotic performance of maximum likelihood (ML) channel estimation algorithms in wideband code division multiple access (WCDMA) scenarios. We concentrate on systems with periodic spreading sequences (period larger than or equal to the symbol span) where the transmitted signal contains a code division multiplexed pilot for channel estimation purposes. First, the asymptotic covariances of the training-only, semi-blind conditional maximum likelihood (CML) and semi-blind Gaussian maximum likelihood (GML) channelestimators are derived. Then, these formulas are further simplified assuming randomized spreading and training sequences under the approximation of high spreading factors and high number of codes. The results provide a useful tool to describe the performance of the channel estimators as a function of basicsystem parameters such as number of codes, spreading factors, or traffic to training power ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a systematic approach to theproblem of nondata aided symbol-timing estimation for linearmodulations. The study is performed under the unconditionalmaximum likelihood framework where the carrier-frequencyerror is included as a nuisance parameter in the mathematicalderivation. The second-order moments of the received signal arefound to be the sufficient statistics for the problem at hand and theyallow the provision of a robust performance in the presence of acarrier-frequency error uncertainty. We particularly focus on theexploitation of the cyclostationary property of linear modulations.This enables us to derive simple and closed-form symbol-timingestimators which are found to be based on the well-known squaretiming recovery method by Oerder and Meyr. Finally, we generalizethe OM method to the case of linear modulations withoffset formats. In this case, the square-law nonlinearity is foundto provide not only the symbol-timing but also the carrier-phaseerror.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider a sequential allocation problem with n individuals. The first individual can consume any amount of some endowment leaving the remaining for the second individual, and so on. Motivated by the limitations associated with the cooperative or non-cooperative solutions we propose a new approach. We establish some axioms that should be satisfied, representativeness, impartiality, etc. The result is a unique asymptotic allocation rule. It is shown for n = 2; 3; 4; and a claim is made for general n. We show that it satisfies a set of desirable properties. Key words: Sequential allocation rule, River sharing problem, Cooperative and non-cooperative games, Dictator and ultimatum games. JEL classification: C79, D63, D74.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Estimation of glomerular filtration rate (eGFR) using a common formula for both adult and pediatric populations is challenging. Using inulin clearances (iGFRs), this study aims to investigate the existence of a precise age cutoff beyond which the Modification of Diet in Renal Disease (MDRD), the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), or the Cockroft-Gault (CG) formulas, can be applied with acceptable precision. Performance of the new Schwartz formula according to age is also evaluated. METHOD: We compared 503 iGFRs for 503 children aged between 33 months and 18 years to eGFRs. To define the most precise age cutoff value for each formula, a circular binary segmentation method analyzing the formulas' bias values according to the children's ages was performed. Bias was defined by the difference between iGFRs and eGFRs. To validate the identified cutoff, 30% accuracy was calculated. RESULTS: For MDRD, CKD-EPI and CG, the best age cutoff was ≥14.3, ≥14.2 and ≤10.8 years, respectively. The lowest mean bias and highest accuracy were -17.11 and 64.7% for MDRD, 27.4 and 51% for CKD-EPI, and 8.31 and 77.2% for CG. The Schwartz formula showed the best performance below the age of 10.9 years. CONCLUSION: For the MDRD and CKD-EPI formulas, the mean bias values decreased with increasing child age and these formulas were more accurate beyond an age cutoff of 14.3 and 14.2 years, respectively. For the CG and Schwartz formulas, the lowest mean bias values and the best accuracies were below an age cutoff of 10.8 and 10.9 years, respectively. Nevertheless, the accuracies of the formulas were still below the National Kidney Foundation Kidney Disease Outcomes Quality Initiative target to be validated in these age groups and, therefore, none of these formulas can be used to estimate GFR in children and adolescent populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teoreettisen populaatiosynteesin avulla voidaan mallintaa tähtijoukkojen ja galaksien fotometrisiä ominaisuuksia yhdistämällä yksittäisten tähtien tuottama säteily, joka saadaan teoreettisista tähtien kehitysmalleista. Valitsemalla sopiva massajakauma syntyville tähdille voidaan muodostaa yksinkertainen tähtipopulaatio, joka koostuu saman ikäisistä ja kemialliselta koostumukseltaan yhtenäisistä tähdistä. Monimutkaisempia tähtipopulaatioita voidaan muodostaa konvoloimalla yksinkertaisten tähtipopulaatioiden luminositeetti jonkin valitun tähtienmuodostushistorian kanssa sekä yhdistämällä näin muodostettuja populaatioita. Tässä työssä tarkastellaan asymptoottisen jättiläishaaran (AGB) tähtien uusien, tarkentuneiden evoluutiomallien vaikutusta populaatiosynteesin tuloksiin niin yksinkertaisten tähtipopulaatioiden kuin galaksien mallinnukseen soveltuvien monimutkaisempien tähtipopulaatioiden kohdalla. Työn päätarkoitus on tuottaa uudistuneisiin malleihin perustuvat populaation massa-luminositeetti -suhteen ja värin väliset relaatiot (MLC-relaatiot). MLC-relaatioita voidaan käyttää populaation massan määrittämiseen sen fotometristen ominaisuuksien (väri, luminositeetti) perusteella. Lisäksi tutkitaan tähtienvälisen pölyn vaikutusta yksinkertaisen spiraaligalaksimallin MLC-relaatioihin. Työssä käytetyt tähtien kehitysmallit perustuvat julkaisuun Marigo et al. (Astronomy & Astrophysics 482, 2008). Havaitaan, että AGB-tähtien vaikutus populaation integroituun luminositeettiin on pieni näkyvillä aallonpituuksilla, mutta merkittävä lähi-infrapuna-alueella. Vaikutus MLC-relaatioihin on vastaavasti merkittävä tarkkailtaessa luminositeettia lähi-infrapunassa sekä käytettäessä värejä, joissa yhdistetään optisia ja lähi-infrapunan kaistoja. Todetaan, että MLC-relaatioiden käyttö lähi-infrapunassa edellyttää tarkentuneen AGB-vaiheen sisällyttämistä populaatiosynteesin malleihin. Tähtienvälisen pölyn vaikutus MLC-relaatioihin todetaan riippuvan käytetystä kaistasta ja väristä, mutta vaikutuksen havaitaan olevan suurin optisen ja lähi-infrapunan väriyhdistelmillä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the present work the bifurcational behaviour of the solutions of Rayleigh equation and corresponding spatially distributed system is being analysed. The conditions of oscillatory and monotonic loss of stability are obtained. In the case of oscillatory loss of stability, the analysis of linear spectral problem is being performed. For nonlinear problem, recurrent formulas for the general term of the asymptotic approximation of the self-oscillations are found, the stability of the periodic mode is analysed. Lyapunov-Schmidt method is being used for asymptotic approximation. The correlation between periodic solutions of ODE and PDE is being investigated. The influence of the diffusion on the frequency of self-oscillations is being analysed. Several numerical experiments are being performed in order to support theoretical findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desarrollo empresarial y creación de empresa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desarrollo empresarial y creación de empresa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers various asymptotic approximations in the near-integrated firstorder autoregressive model with a non-zero initial condition. We first extend the work of Knight and Satchell (1993), who considered the random walk case with a zero initial condition, to derive the expansion of the relevant joint moment generating function in this more general framework. We also consider, as alternative approximations, the stochastic expansion of Phillips (1987c) and the continuous time approximation of Perron (1991). We assess how these alternative methods provide or not an adequate approximation to the finite-sample distribution of the least-squares estimator in a first-order autoregressive model. The results show that, when the initial condition is non-zero, Perron's (1991) continuous time approximation performs very well while the others only offer improvements when the initial condition is zero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the asymptotic distribution of a simple two-stage (Hannan-Rissanen-type) linear estimator for stationary invertible vector autoregressive moving average (VARMA) models in the echelon form representation. General conditions for consistency and asymptotic normality are given. A consistent estimator of the asymptotic covariance matrix of the estimator is also provided, so that tests and confidence intervals can easily be constructed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <>, qui s'observe dans les <>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$.