916 resultados para Asymptomatic carotid stenosis
Resumo:
Carotid artery disease is the most prevalent etiologic precursor of ischemic stroke, which is a major health hazard and the second most common cause of death in the world. If a patient presents with a symptomatic high-grade (>70%) stenosis in the internal carotid artery, the treatment of choice is carotid endarterectomy. However, the natural course of radiologically equivalent carotid lesions may be clinically quite diverse, and the reason for that is unknown. It would be of utmost importance to develop molecular markers that predict the symptomatic phenotype of an atherosclerotic carotid plaque (CP) and help to differentiate vulnerable lesions from stable ones. The aim of this study was to investigate the morphologic and molecular factors that associate with stroke-prone CPs. In addition to immunohistochemistry, DNA microarrays were utilized to identify molecular markers that would differentiate between symptomatic and asymptomatic CPs. Endothelial adhesion molecule expression (ICAM-1, VCAM-1, P-selectin, and E-selectin) did not differ between symptomatic and asymptomatic patients. Denudation of endothelial cells was associated with symptom-generating carotid lesions, but in studies on the mechanism of decay of endothelial cells, markers of apoptosis (TUNEL, activated caspase 3) were found to be decreased in the endothelium of symptomatic lesions. Furthermore, markers of endothelial apoptosis were directly associated with those of cell proliferation (Ki-67) in all plaques. FasL expression was significantly increased on the endothelium of symptomatic CPs. DNA microarray analysis revealed prominent induction of specific genes in symptomatic CPs, including those subserving iron and heme metabolism, namely HO-1, and hemoglobin scavenger receptor CD163. HO-1 and CD163 proteins were also increased in symptomatic CPs and associated with intraplaque iron deposits, which, however, did not correlate with symptom status itself. ADRP, the gene for adipophilin, was also overexpressed in symptomatic CPs. Adipophilin expression was markedly increased in ulcerated CPs and colocalized with extravasated red blood cells and cholesterol crystals. Taken together, the phenotypic characteristics and the numerous possible molecular mediators of the destabilization of carotid plaques provide potential platforms for future research. The denudation of the endothelial lining observed in symptomatic CPs may lead to direct thromboembolism and maintain harmful oxidative and inflammatory processes, predispose to plaque microhemorrhages, and contribute to lipid accumulation into the plaque, thereby making it vulnerable to rupture.
Resumo:
OBJECTIVES: It remains controversial whether patients with severe disease of the internal carotid artery and a coexisting stenotic lesion downstream would benefit from a carotid endarterectomy (CEA) of the proximal lesion. The aim of this study was to simulate the hemodynamic and wall shear effects of in-tandem internal carotid artery stenosis using a computational fluid dynamic (CFD) idealized model to give insight into the possible consequences of CEA on these lesions. METHODS: A CFD model of steady viscous flow in a rigid tube with two asymmetric stenoses was introduced to simulate blood flow in arteries with multiple constrictions. The effect of varying the distance between the two stenoses, and the severity of the upstream stenosis on the pressure and wall shear stress (WSS) distributions on the second plaque, was investigated. The influence of the relative positions of the two stenoses was also assessed. RESULTS: The distance between the plaques was found to have minimal influence on the overall hemodynamic effect except for the presence of a zone of low WSS (range -20 to 30 dyne/cm2) adjacent to both lesions when the two stenoses were sufficiently close (<4 times the arterial diameter). The upstream stenosis was protective if it was larger than the downstream stenosis. The relative positions of the stenoses were found to influence the WSS but not the pressure distribution. CONCLUSIONS: The geometry and positions of the lesions need to be considered when considering the hemodynamic effects of an in-tandem stenosis. Low WSS is thought to cause endothelial dysfunction and initiate atheroma formation. The fact that there was a flow recirculation zone with low WSS in between the two stenoses may demonstrate how two closely positioned plaques may merge into one larger lesion. Decision making for CEA may need to take into account the hemodynamic situation when an in-tandem stenosis is found. CFD may aid in the risk stratification of patients with this problem.
Resumo:
Background: Cholesteryl ester transfer protein (CETP) plays a major role in lipid metabolism, but studies on the association of CETP polymorphisms with risks of cardiovascular disease are inconsistent. This study investigated whether the CETP gene I405V and Taq1B polymorphisms modified subclinical atherosclerosis in an asymptomatic Brazilian population sample. Methods: The polymorphisms were analyzed using polymerase chain reaction in 207 adult volunteers. Serum lipid profiles, oxLDL Ab titers, C-reactive protein and tumor necrosis factor-a concentrations and CETP and phospholipid transfer protein (PLTP) activities were determined, and common carotid artery intima-media thickness (cIMT) was measured using ultrasonography. Results: No differences in cIMT were observed between the presence or absence of the minor B2 and V alleles in either polymorphism. However, inverse correlations between mean cIMT and CETP activity in the presence of these polymorphisms were observed, and positive correlations of these polymorphisms with PLTP activity and oxLDL Ab titers were identified. Moreover, logistic multivariate analysis revealed that the presence of the B2 allele was associated with a 5.1-fold (CI 95%, OR: 1.26 - 21.06) increased risk for cIMT, which was equal and above the 66th percentile and positively interacted with age. However, no associations with the V allele or CETP and PLTP activities were observed. Conclusions: None of the studied parameters, including CETP activity, explained the different relationships between these polymorphisms and cIMT, suggesting that other non-determined factors were affected by the genotypes and related to carotid atherosclerotic disease.
Resumo:
Objectives: Previous evidence supports a direct relationship between the calcium burden (volume) on post-contrast CT with the percent internal carotid artery (ICA) stenosis at the carotid bifurcation. We sought to further investigate this relationship by comparing non-enhanced CT (NECT) and digital subtraction angiography (DSA). Methods: 50 patients (aged 41-82 years) were retrospectively identified who had undergone cervical NECT and DSA. A 64-multidetector array CT (MDCT) scanner was utilised and the images reviewed using preset window widths/levels (30/300) optimised to calcium, with the volumes measured via three-dimensional reconstructive software. Stenosis measurements were performed on DSA and luminal diameter stenoses >40% were considered "significant". Volume thresholds of 0.01, 0.03, 0.06, 0.09 and 0.12 cm(3) were utilised and Pearson's correlation coefficient (r) was calculated to correlate the calcium volume with percent stenosis. Results: Of 100 carotid bifurcations, 88 were available and of these 7 were significantly stenotic. The NECT calcium volume moderately correlated with percent stenosis on DSA r=0.53 (p<0.01). A moderate-strong correlation was found between the square root of calcium volume on NECT with percent stenosis on DSA (r=0.60, p<0.01). Via a receiver operating characteristic curve, 0.06 cm(3) was determined to be the best threshold (sensitivity 100%, specificity 90.1%, negative predictive value 100% and positive predictive value 46.7%) for detecting significant stenoses. Conclusion: This preliminary investigation confirms a correlation between carotid bifurcation calcium volume and percent ICA stenosis and is promising for the optimal threshold for stenosis detection. Future studies could utilise calcium volumes to create a "score" that could predict high grade stenosis.
Resumo:
Abstract Background To establish the correlation between quantitative analysis based on B-mode ultrasound images of vulnerable carotid plaque and histological examination of the surgically removed plaque, on the basis of a videodensitometric digital texture characterization. Methods Twenty-five patients (18 males, mean age 67 ± 6.9 years) admitted for carotid endarterectomy for extracranial high-grade internal carotid artery stenosis (≥ 70% luminal narrowing) underwent to quantitative ultrasonic tissue characterization of carotid plaque before surgery. A computer software (Carotid Plaque Analysis Software) was developed to perform the videodensitometric analysis. The patients were divided into 2 groups according to symptomatology (group I, 15 symptomatic patients; and group II, 10 patients asymptomatic). Tissue specimens were analysed for lipid, fibromuscular tissue and calcium. Results The first order statistic parameter mean gray level was able to distinguish the groups I and II (p = 0.04). The second order parameter energy also was able to distinguish the groups (p = 0,02). A histological correlation showed a tendency of mean gray level to have progressively greater values from specimens with < 50% to >75% of fibrosis. Conclusion Videodensitometric computer analysis of scan images may be used to identify vulnerable and potentially unstable lipid-rich carotid plaques, which are less echogenic in density than stable or asymptomatic, more densely fibrotic plaques.
Resumo:
Carotid endarterectomy (CEA) reduces the risk of stroke in patients with symptomatic (>50%) and asymptomatic (>60%) carotid artery stenosis. Here we report the midterm results of a microsurgical non-patch technique and compare these findings to those in the literature.
Resumo:
OBJECT The risk of recurrence of cerebrovascular events within the first 72 hours of admission in patients hospitalized with symptomatic carotid artery (CA) stenoses and the risks and benefits of emergency CA intervention within the first hours after the onset of symptoms are not well known. Therefore, the authors aimed to assess (1) the ipsilateral recurrence rate within 72 hours of admission, in the period from 72 hours to 7 days, and after 7 days in patients presenting with nondisabling stroke, transient ischemic attack (TIA), or amaurosis fugax (AF), and with an ipsilateral symptomatic CA stenosis of 50% or more, and (2) the risk of stroke in CA interventions within 48 hours of admission versus the risk in interventions performed after 48 hours. METHODS Ninety-four patients were included in this study. These patients were admitted to hospital within 48 hours of a nondisabling stroke, TIA, or AF resulting from a symptomatic CA stenosis of 50% or more. The patients underwent carotid endarterectomy (85 patients) or CA stenting (9 patients). At baseline, the cardiovascular risk factors of the patients, the degree of symptomatic CA stenosis, and the type of secondary preventive treatment were assessed. The in-hospital recurrence rate of stroke, TIA, or AF ipsilateral to the symptomatic CA stenosis was determined for the first 72 hours after admission, from 72 hours to 7 days, and after 7 days. Procedure-related cerebrovascular events were also recorded. RESULTS The median time from symptom onset to CA intervention was 5 days (interquartile range 3.00-9.25 days). Twenty-one patients (22.3%) underwent CA intervention within 48 hours after being admitted. Overall, 15 recurrent cerebrovascular events were observed in 12 patients (12.8%) in the period between admission and CA intervention: 3 strokes (2 strokes in progress and 1 stroke) (3.2%), 5 TIAs (5.3%), and 1 AF (1.1%) occurred within the first 72 hours (total 9.6%) of admission; 1 TIA (1.1%) occurred between 72 hours and 7 days, and 5 TIAs (5.3%) occurred after more than 7 days. The corresponding actuarial cerebrovascular recurrence rates were 11.4% (within 72 hours of admission), 2.4% (between 72 hours and 7 days), and 7.9% (after 7 days). Among baseline characteristics, no predictive factors for cerebrovascular recurrence were identified. Procedure-related cerebrovascular events occurred at a rate of 4.3% (3 strokes and 1 TIA), and procedures performed within the first 48 hours and procedures performed after 48 hours had a similar frequency of these events (4.5% vs. 4.1%, respectively; p = 0.896). CONCLUSIONS The in-hospital recurrence of cerebrovascular events was quite low, but all recurrent strokes occurred within 72 hours. The risk of stroke associated with a CA intervention performed within the first 48 hours was not increased compared with that for later interventions. This raises the question of the optimal timing of CA intervention in symptomatic CA stenosis. To answer this question, more data are needed, preferably from large randomized trials.
Resumo:
Aim. Carotid artery stenting (CAS) is the treatment of choice for recurrent stenosis after carotid endarterectomy (CEA). However a significative incidence of in-stent restenosis could be occurred. Despite classical CEA leads to good results, in selective cases bypass graft may be the best treatment of in-stent restenosis. Case reports. We describe two cases of carotid bypass graft performed to treat a recurrent in-stent stenosis after CAS for post-CEA restenosis. No death and cardiac complication occurred and no cranial nerves impairment was detected. Conclusion. Prosthetic bypass graft is safe and effective in treatment of in-stent recurrent restenosis after CEA restenosis.
Resumo:
Background: High-resolution magnetic resonance (MR) imaging has been used for MR imaging-based structural stress analysis of atherosclerotic plaques. The biomechanical stress profile of stable plaques has been observed to differ from that of unstable plaques; however, the role that structural stresses play in determining plaque vulnerability remains speculative. Methods: A total of 61 patients with previous history of symptomatic carotid artery disease underwent carotid plaque MR imaging. Plaque components of the index artery such as fibrous tissue, lipid content and plaque haemorrhage (PH) were delineated and used for finite element analysis-based maximum structural stress (M-C Stress) quantification. These patients were followed up for 2 years. The clinical end point was occurrence of an ischaemic cerebrovascular event. The association of the time to the clinical end point with plaque morphology and M-C Stress was analysed. Results: During a median follow-up duration of 514 days, 20% of patients (n=12) experienced an ischaemic event in the territory of the index carotid artery. Cox regression analysis indicated that M-C Stress (hazard ratio (HR): 12.98 (95% confidence interval (CI): 1.32-26.67, pZ0.02), fibrous cap (FC) disruption (HR: 7.39 (95% CI: 1.61e33.82), p Z 0.009) and PH (HR: 5.85 (95% CI: 1.27e26.77), p Z 0.02) are associated with the development of subsequent cerebrovascular events. Plaques associated with future events had higher M-C Stress than those which had remained asymptomatic (median (interquartile range, IQR): 330 kPa (229e494) vs. 254 kPa (166-290), p Z0.04). Conclusions: High biomechanical structural stresses, in addition to FC rupture and PH, are associated with subsequent cerebrovascular events.
Resumo:
The rupture of atherosclerotic plaques is known to be associated with the stresses that act on or within the arterial wall. The extreme wall tensile stress (WTS) is usually recognized as a primary trigger for the rupture of vulnerable plaque. The present study used the in-vivo high-resolution multi-spectral magnetic resonance imaging (MRI) for carotid arterial plaque morphology reconstruction. Image segmentation of different plaque components was based on the multi-spectral MRI and co-registered with different sequences for the patient. Stress analysis was performed on totally four subjects with different plaque burden by fluid-structure interaction (FSI) simulations. Wall shear stress distributions are highly related to the degree of stenosis, while the level of its magnitude is much lower than the WTS in the fibrous cap. WTS is higher in the luminal wall and lower at the outer wall, with the lowest stress at the lipid region. Local stress concentrations are well confined in the thinner fibrous cap region, and usually locating in the plaque shoulder; the introduction of relative stress variation during a cycle in the fibrous cap can be a potential indicator for plaque fatigue process in the thin fibrous cap. According to stress analysis of the four subjects, a risk assessment in terms of mechanical factors could be made, which may be helpful in clinical practice. However, more subjects with patient specific analysis are desirable for plaque-stability study.