990 resultados para Assisted selection
Resumo:
A genome-wide scan for quantitative trait loci (QTL) affecting gastrointestinal nematode resistance in sheep was completed using a double backcross population derived from Red Maasai and Dorper ewes bred to F1 rams. This design provided an opportunity to map potentially unique genetic variation associated with a parasite-tolerant breed like Red Maasai, a breed developed to survive East African grazing conditions. Parasite indicator phenotypes (blood packed cell volume PCV and faecal egg count FEC) were collected on a weekly basis from 1064 lambs during a single 3-month post-weaning grazing challenge on infected pastures. The averages of last measurements for FEC (AVFEC) and PCV (AVPCV), along with decline in PCV from challenge start to end (PCVD), were used to select lambs (N = 371) for genotyping that represented the tails (10% threshold) of the phenotypic distributions. Marker genotypes for 172 microsatellite loci covering 25 of 26 autosomes (1560.7 cm) were scored and corrected by Genoprob prior to qxpak analysis that included BoxCox transformed AVFEC and arcsine transformed PCV statistics. Significant QTL for AVFEC and AVPCV were detected on four chromosomes, and this included a novel AVFEC QTL on chromosome 6 that would have remained undetected without BoxCox transformation methods. The most significant P-values for AVFEC, AVPCV and PCVD overlapped the same marker interval on chromosome 22, suggesting the potential for a single causative mutation, which remains unknown. In all cases, the favourable QTL allele was always contributed from Red Maasai, providing support for the idea that future marker-assisted selection for genetic improvement of production in East Africa will rely on markers in linkage disequilibrium with these QTL.
Resumo:
Asian soybean rust (ASR) is caused by the fungal pathogen Phakopsora pachyrhizi Sydow & Sydow. It was first identified in Brazil in 2001 and quickly infected soybean areas in several countries in South America. Primary efforts to combat this disease must involve the development of resistant cultivars. Four distinct genes that confer resistance against ASR have been reported: Rpp1, Rpp2, Rpp3, and Rpp4. However, no cultivar carrying any of those resistance loci has been released. The main objective of this study was to genetically map Rpp2 and Rpp4 resistance genes. Two F(2:3) populations, derived from the crosses between the resistant lines PI 230970 (Rpp2), PI 459025 (Rpp4) and the susceptible cultivar BRS 184, were used in this study. The mapping populations and parental lines were inoculated with a field isolate of P. pachyrhizi and evaluated for lesion type as resistant (RB lesions) or susceptible (TAN lesions). The mapping populations were screened with SSR markers, using the bulk segregant analysis (BSA) to expedite the identification of linked markers. Both resistance genes showed an expected segregation ratio for a dominant trait. This study allowed mapping Rpp2 and Rpp4 loci on the linkage groups J and G, respectively. The associated markers will be of great value on marker assisted selection for this trait.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Stem canker caused by the fungus Diaporthe phaseolorum f. sp. meridionalis is a disease that limits soybean cultivation. Phenotypic evaluations aiming at disease resistance require labor-intensive processes, as for instance handling and transport of phytopathogens. The use of DNA markers in the selective procedures eases certain phases, besides being practical, safe and reliable. A RAPD fragment of 588pb was identified among bulks of resistant and susceptible plants in the cross BR92-15454 (R) x IAC-11 (S). Through co-segregation, the distance between the resistance locus and the fragment was estimated at 7.4 ± 2.1 cM, with a Lodmax. of 23.072 (first year) and at 6.0 ± 3.4 cM with a Lodmax. of 7.806 (second year). The fragment was converted into a SCAR marker and digested with enzyme Hinc II, which made the classification in homozygous resistant, heterozygous resistant and susceptible plants possible. This SCAR marker is suitable for use in the improvement program conducted in Jaboticabal.
Resumo:
Background: New challenges are rising in the animal protein market, and one of the main world challenges is to produce more in shorter time, with better quality and in a sustainable way. Brazil is the largest beef exporter in volume hence the factors affecting the beef meat chain are of major concern in countrýs economy. An emerging class of biotechnological approaches, the molecular markers, is bringing new perspectives to face these challenges, particularly after the publication of the first complete livestock genome (bovine), which has triggered a massive initiative to put in practice the benefits of the so called the Post-Genomic Era. Review: This article aimed at showing the directions and insights in the application of molecular markers on livestock genetic improvement and reproduction as well at organizing the progress so far, pointing some perspectives of these emerging technologies in Brazilian ruminant production context. An overview on the nature of the main molecular markers explored in ruminant production is provided, which describes the molecular bases and detection approaches available for microsatellites (STR) and single nucleotide polymorphisms (SNP). A topic is dedicated to review the history of association studies between markers and important trait variation in livestock, showing the timeline starting on quantitative trait loci (QTL) identification using STR markers and ending in high resolution SNP panels to proceed whole genome scans for phenotype/genotype association. Also the article organizes this information to reveal how QTL prospection using STR could open ground to the feasibility of marker-assisted selection and why this approach is quickly being replaced by studies involving the application of genome-wide association using SNP research in a new concept called genomic selection. Conclusion: The world's scientific community is dedicating effort and resources to apply SNP information in livestock selection through the development of high density panels for genomic association studies, connecting molecular genetic data with phenotypes of economic interest. Once generated, this information can be used to take decisions in genetic improvement programs by selecting animals with the assistance of molecular markers.
Resumo:
Marker assisted selection depends on the identification of tightly linked association between marker and the trait of interest. In the present work, functional (EST-SSRs) and genomic (gSSRs) microsatellite markers were used to detect putative QTLs for sugarcane yield components (stalk number, diameter and height) and as well as for quality parameters (Brix, Pol and fibre) in plant cane. The mapping population (200 individuals) was derived from a bi-parental cross (IACSP95-3018 x IACSP93-3046) from the IAC Sugarcane Breeding Program. As the map is under construction, single marker trait association analysis based on the likelihood ratio test was undertaken to detect the QTLs. Of the 215 single dose markers evaluated (1:1 and 3:1), 90 (42%) were associated with putative QTLs involving 43 microsatellite primers (18 gSSRs and 25 EST-SSRs). For the yield components, 41 marker/trait associations were found: 20 for height, 6 for diameter and 15 for stalk number. An EST-SSRs marker with homology to non-phototropic hypocotyls 4 (NPH4) protein was associated with a putative QTL with positive effect for diameter as also with a negative effect for stalk number. In relation to the quality parameters, 18 marker trait associations were found for Brix, 19 for Pol, and 12 for fibre. For fibre, 58% of the QTLs detected showed a negative effect on this trait. Some makers associated with QTLs with a negative effect for fibre showed a positive effect for Pol, reflecting the negative correlation generally observed between these traits.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)