994 resultados para Asset structure
Resumo:
The paper examines the decision by Australian Real Estate Trusts (A-REITs) to issue seasoned equity offerings from 2000 - 2008 and stock market reaction to the offerings using panel data and event study methodologies, respectively. The global financial crisis has resulted in freezing of the Australian bond markets, with several A-REITs left with seasoned equity issuance and asset sales as the only viable modes of raising additional capital. The findings review that leverage and operating risk are negative significant determinants of seasoned equity offerings; profitability and growth opportunities are positive significant determinants. Of the structure and type of properties held by the A-REIT, only stapled management structure and international operations are significant determinants. Type of properties held by A-REITs show inconsistent results. Similar to previous studies of seasoned equity offerings, we find a significant negative abnormal return associated with their announcement and no evidence of excessive leakage of information. Cross-sectional regressions show that the issued amount raised and leverage are significant factors affecting abnormal returns.
Resumo:
Executive Summary The objective of this report was to use the Sydney Opera House as a case study of the application of Building Information Modelling (BIM). The Sydney opera House is a complex, large building with very irregular building configuration, that makes it a challenging test. A number of key concerns are evident at SOH: • the building structure is complex, and building service systems - already the major cost of ongoing maintenance - are undergoing technology change, with new computer based services becoming increasingly important. • the current “documentation” of the facility is comprised of several independent systems, some overlapping and is inadequate to service current and future services required • the building has reached a milestone age in terms of the condition and maintainability of key public areas and service systems, functionality of spaces and longer term strategic management. • many business functions such as space or event management require up-to-date information of the facility that are currently inadequately delivered, expensive and time consuming to update and deliver to customers. • major building upgrades are being planned that will put considerable strain on existing Facilities Portfolio services, and their capacity to manage them effectively While some of these concerns are unique to the House, many will be common to larger commercial and institutional portfolios. The work described here supported a complementary task which sought to identify if a building information model – an integrated building database – could be created, that would support asset & facility management functions (see Sydney Opera House – FM Exemplar Project, Report Number: 2005-001-C-4 Building Information Modelling for FM at Sydney Opera House), a business strategy that has been well demonstrated. The development of the BIMSS - Open Specification for BIM has been surprisingly straightforward. The lack of technical difficulties in converting the House’s existing conventions and standards to the new model based environment can be related to three key factors: • SOH Facilities Portfolio – the internal group responsible for asset and facility management - have already well established building and documentation policies in place. The setting and adherence to well thought out operational standards has been based on the need to create an environment that is understood by all users and that addresses the major business needs of the House. • The second factor is the nature of the IFC Model Specification used to define the BIM protocol. The IFC standard is based on building practice and nomenclature, widely used in the construction industries across the globe. For example the nomenclature of building parts – eg ifcWall, corresponds to our normal terminology, but extends the traditional drawing environment currently used for design and documentation. This demonstrates that the international IFC model accurately represents local practice for building data representation and management. • a BIM environment sets up opportunities for innovative processes that can exploit the rich data in the model and improve services and functions for the House: for example several high-level processes have been identified that could benefit from standardized Building Information Models such as maintenance processes using engineering data, business processes using scheduling, venue access, security data and benchmarking processes using building performance data. The new technology matches business needs for current and new services. The adoption of IFC compliant applications opens the way forward for shared building model collaboration and new processes, a significant new focus of the BIM standards. In summary, SOH current building standards have been successfully drafted for a BIM environment and are confidently expected to be fully developed when BIM is adopted operationally by SOH. These BIM standards and their application to the Opera House are intended as a template for other organisations to adopt for the own procurement and facility management activities. Appendices provide an overview of the IFC Integrated Object Model and an understanding IFC Model Data.
Resumo:
“SOH see significant benefit in digitising its drawings and operation and maintenance manuals. Since SOH do not currently have digital models of the Opera House structure or other components, there is an opportunity for this national case study to promote the application of Digital Facility Modelling using standardized Building Information Models (BIM)”. The digital modelling element of this project examined the potential of building information models for Facility Management focusing on the following areas: • The re-usability of building information for FM purposes • BIM as an Integrated information model for facility management • Extendibility of the BIM to cope with business specific requirements • Commercial facility management software using standardised building information models • The ability to add (organisation specific) intelligence to the model • A roadmap for SOH to adopt BIM for FM The project has established that BIM – building information modelling - is an appropriate and potentially beneficial technology for the storage of integrated building, maintenance and management data for SOH. Based on the attributes of a BIM, several advantages can be envisioned: consistency in the data, intelligence in the model, multiple representations, source of information for intelligent programs and intelligent queries. The IFC – open building exchange standard – specification provides comprehensive support for asset and facility management functions, and offers new management, collaboration and procurement relationships based on sharing of intelligent building data. The major advantages of using an open standard are: information can be read and manipulated by any compliant software, reduced user “lock in” to proprietary solutions, third party software can be the “best of breed” to suit the process and scope at hand, standardised BIM solutions consider the wider implications of information exchange outside the scope of any particular vendor, information can be archived as ASCII files for archival purposes, and data quality can be enhanced as the now single source of users’ information has improved accuracy, correctness, currency, completeness and relevance. SOH current building standards have been successfully drafted for a BIM environment and are confidently expected to be fully developed when BIM is adopted operationally by SOH. There have been remarkably few technical difficulties in converting the House’s existing conventions and standards to the new model based environment. This demonstrates that the IFC model represents world practice for building data representation and management (see Sydney Opera House – FM Exemplar Project Report Number 2005-001-C-3, Open Specification for BIM: Sydney Opera House Case Study). Availability of FM applications based on BIM is in its infancy but focussed systems are already in operation internationally and show excellent prospects for implementation systems at SOH. In addition to the generic benefits of standardised BIM described above, the following FM specific advantages can be expected from this new integrated facilities management environment: faster and more effective processes, controlled whole life costs and environmental data, better customer service, common operational picture for current and strategic planning, visual decision-making and a total ownership cost model. Tests with partial BIM data – provided by several of SOH’s current consultants – show that the creation of a SOH complete model is realistic, but subject to resolution of compliance and detailed functional support by participating software applications. The showcase has demonstrated successfully that IFC based exchange is possible with several common BIM based applications through the creation of a new partial model of the building. Data exchanged has been geometrically accurate (the SOH building structure represents some of the most complex building elements) and supports rich information describing the types of objects, with their properties and relationships.
Resumo:
Australia’s civil infrastructure assets of roads, bridges, railways, buildings and other structures are worth billions of dollars. Road assets alone are valued at around A$ 140 billion. As the condition of assets deteriorate over time, close to A$10 billion is spent annually in asset maintenance on Australia's roads, or the equivalent of A$27 million per day. To effectively manage road infrastructures, firstly, road agencies need to optimise the expenditure for asset data collection, but at the same time, not jeopardise the reliability in using the optimised data to predict maintenance and rehabilitation costs. Secondly, road agencies need to accurately predict the deterioration rates of infrastructures to reflect local conditions so that the budget estimates could be accurately estimated. And finally, the prediction of budgets for maintenance and rehabilitation must provide a certain degree of reliability. A procedure for assessing investment decision for road asset management has been developed. The procedure includes: • A methodology for optimising asset data collection; • A methodology for calibrating deterioration prediction models; • A methodology for assessing risk-adjusted estimates for life-cycle cost estimates. • A decision framework in the form of risk map
Resumo:
This document provides a review of international and national practices in investment decision support tools in road asset management. Efforts were concentrated on identifying analytic frameworks, evaluation methodologies and criteria adopted by current tools. Emphasis was also given to how current approaches support Triple Bottom Line decision-making. Benefit Cost Analysis and Multiple Criteria Analysis are principle methodologies in supporting decision-making in Road Asset Management. The complexity of the applications shows significant differences in international practices. There is continuing discussion amongst practitioners and researchers regarding to which one is more appropriate in supporting decision-making. It is suggested that the two approaches should be regarded as complementary instead of competitive means. Multiple Criteria Analysis may be particularly helpful in early stages of project development, say strategic planning. Benefit Cost Analysis is used most widely for project prioritisation and selecting the final project from amongst a set of alternatives. Benefit Cost Analysis approach is useful tool for investment decision-making from an economic perspective. An extension of the approach, which includes social and environmental externalities, is currently used in supporting Triple Bottom Line decision-making in the road sector. However, efforts should be given to several issues in the applications. First of all, there is a need to reach a degree of commonality on considering social and environmental externalities, which may be achieved by aggregating the best practices. At different decision-making level, the detail of consideration of the externalities should be different. It is intended to develop a generic framework to coordinate the range of existing practices. The standard framework will also be helpful in reducing double counting, which appears in some current practices. Cautions should also be given to the methods of determining the value of social and environmental externalities. A number of methods, such as market price, resource costs and Willingness to Pay, are found in the review. The use of unreasonable monetisation methods in some cases has discredited Benefit Cost Analysis in the eyes of decision makers and the public. Some social externalities, such as employment and regional economic impacts, are generally omitted in current practices. This is due to the lack of information and credible models. It may be appropriate to consider these externalities in qualitative forms in a Multiple Criteria Analysis. Consensus has been reached in considering noise and air pollution in international practices. However, Australia practices generally omitted these externalities. Equity is an important consideration in Road Asset Management. The considerations are either between regions, or social groups, such as income, age, gender, disable, etc. In current practice, there is not a well developed quantitative measure for equity issues. More research is needed to target this issue. Although Multiple Criteria Analysis has been used for decades, there is not a generally accepted framework in the choice of modelling methods and various externalities. The result is that different analysts are unlikely to reach consistent conclusions about a policy measure. In current practices, some favour using methods which are able to prioritise alternatives, such as Goal Programming, Goal Achievement Matrix, Analytic Hierarchy Process. The others just present various impacts to decision-makers to characterise the projects. Weighting and scoring system are critical in most Multiple Criteria Analysis. However, the processes of assessing weights and scores were criticised as highly arbitrary and subjective. It is essential that the process should be as transparent as possible. Obtaining weights and scores by consulting local communities is a common practice, but is likely to result in bias towards local interests. Interactive approach has the advantage in helping decision-makers elaborating their preferences. However, computation burden may result in lose of interests of decision-makers during the solution process of a large-scale problem, say a large state road network. Current practices tend to use cardinal or ordinal scales in measure in non-monetised externalities. Distorted valuations can occur where variables measured in physical units, are converted to scales. For example, decibels of noise converts to a scale of -4 to +4 with a linear transformation, the difference between 3 and 4 represents a far greater increase in discomfort to people than the increase from 0 to 1. It is suggested to assign different weights to individual score. Due to overlapped goals, the problem of double counting also appears in some of Multiple Criteria Analysis. The situation can be improved by carefully selecting and defining investment goals and criteria. Other issues, such as the treatment of time effect, incorporating risk and uncertainty, have been given scant attention in current practices. This report suggested establishing a common analytic framework to deal with these issues.
Resumo:
The aim of this project is to develop a systematic investment decision-making framework for infrastructure asset management by incorporation economic justification, social and environmental consideration in the decision-making process. This project assesses the factors that are expected to provide significant impacts on the variability of expenditures. A procedure for assessing risk and reliability for project investment appraisals will be developed. The project investigates public perception, social and environmental impacts on road infrastructure investment. This research will contribute to the debate about how important social and environmental issues should be incorporated into the investment decision-making process for infrastructure asset management.
Resumo:
Both in developed and developing economies, major public funding is invested in civil infrastructure assets. Efficiency and comfort level of expected and demanded living standards are largely dependant on the management strategies of these assets. Buildings are one of the major & vital assets, which need to be maintained primarily to ensure its functionality by effective & efficient delivery of services and to optimize economic benefits. Not withstanding, public building infrastructure is not considered in Infrastructure report card published by Australian Infrastructure Report Card Alliance Partners (2001). The reason appears to be not having enough data to rate public building infrastructure. American Infrastructure Report Card (2001) gave “School Buildings” ‘d-’ rating, which is below ‘poor’. For effective asset management of building infrastructure, a need emerged to optimise the budget for managing assets, to cope up with increased user expectations, to response effectively to possible asset failures, to deal with ageing of assets and aging populations and to treat other scenarios including technology advancement and non-asset solutions. John (Asset Management, 2001) suggests that in the area of asset management worldwide, UK, Australia and New Zealand are leading.
Resumo:
Risks and uncertainties are inevitable in engineering projects and infrastructure investments. Decisions about investment in infrastructure such as for maintenance, rehabilitation and construction works can pose risks, and may generate significant impacts on social, cultural, environmental and other related issues. This report presents the results of a literature review of current practice in identifying, quantifying and managing risks and predicting impacts as part of the planning and assessment process for infrastructure investment proposals. In assessing proposals for investment in infrastructure, it is necessary to consider social, cultural and environmental risks and impacts to the overall community, as well as financial risks to the investor. The report defines and explains the concept of risk and uncertainty, and describes the three main methodology approaches to the analysis of risk and uncertainty in investment planning for infrastructure, viz examining a range of scenarios or options, sensitivity analysis, and a statistical probability approach, listed here in order of increasing merit and complexity. Forecasts of costs, benefits and community impacts of infrastructure are recognised as central aspects of developing and assessing investment proposals. Increasingly complex modelling techniques are being used for investment evaluation. The literature review identified forecasting errors as the major cause of risk. The report contains a summary of the broad nature of decision-making tools used by governments and other organisations in Australia, New Zealand, Europe and North America, and shows their overall approach to risk assessment in assessing public infrastructure proposals. While there are established techniques to quantify financial and economic risks, quantification is far less developed for political, social and environmental risks and impacts. The report contains a summary of the broad nature of decision-making tools used by governments and other organisations in Australia, New Zealand, Europe and North America, and shows their overall approach to risk assessment in assessing public infrastructure proposals. While there are established techniques to quantify financial and economic risks, quantification is far less developed for political, social and environmental risks and impacts. For risks that cannot be readily quantified, assessment techniques commonly include classification or rating systems for likelihood and consequence. The report outlines the system used by the Australian Defence Organisation and in the Australian Standard on risk management. After each risk is identified and quantified or rated, consideration can be given to reducing the risk, and managing any remaining risk as part of the scope of the project. The literature review identified use of risk mapping techniques by a North American chemical company and by the Australian Defence Organisation. This literature review has enabled a risk assessment strategy to be developed, and will underpin an examination of the feasibility of developing a risk assessment capability using a probability approach.
Resumo:
This report fully summarises a project designed to enhance commercial real estate performance within both operational and investment contexts through the development of a model aimed at supporting improved decision-making. The model is based on a risk adjusted discounted cash flow, providing a valuable toolkit for building managers, owners, and potential investors for evaluating individual building performance in terms of financial, social and environmental criteria over the complete life-cycle of the asset. The ‘triple bottom line’ approach to the evaluation of commercial property has much significance for the administrators of public property portfolios in particular. It also has applications more generally for the wider real estate industry given that the advent of ‘green’ construction requires new methods for evaluating both new and existing building stocks. The research is unique in that it focuses on the accuracy of the input variables required for the model. These key variables were largely determined by market-based research and an extensive literature review, and have been fine-tuned with extensive testing. In essence, the project has considered probability-based risk analysis techniques that required market-based assessment. The projections listed in the partner engineers’ building audit reports of the four case study buildings were fed into the property evaluation model developed by the research team. The results are strongly consistent with previously existing, less robust evaluation techniques. And importantly, this model pioneers an approach for taking full account of the triple bottom line, establishing a benchmark for related research to follow. The project’s industry partners expressed a high degree of satisfaction with the project outcomes at a recent demonstration seminar. The project in its existing form has not been geared towards commercial applications but it is anticipated that QDPW and other industry partners will benefit greatly by using this tool for the performance evaluation of property assets. The project met the objectives of the original proposal as well as all the specified milestones. The project has been completed within budget and on time. This research project has achieved the objective by establishing research foci on the model structure, the key input variable identification, the drivers of the relevant property markets, the determinants of the key variables (Research Engine no.1), the examination of risk measurement, the incorporation of risk simulation exercises (Research Engine no.2), the importance of both environmental and social factors and, finally the impact of the triple bottom line measures on the asset (Research Engine no. 3).
Resumo:
Despite an increase in businesses started by celebrities, we have limited understanding as to how celebrity entrepreneurs benefit new ventures. Drawing on a reputational capital perspective, we develop the notion of celebrity capital and show how it can be used to uniquely differentiate the venture and to overcome liabilities of newness. We discuss how celebrity capital can negatively influence the venture when negative information about the celebrity surfaces and in terms of limiting the scope of the venture. We discuss the different strategic implications of celebrity capital for ventures using celebrity entrepreneurs versus endorsers.
Resumo:
Reliable budget/cost estimates for road maintenance and rehabilitation are subjected to uncertainties and variability in road asset condition and characteristics of road users. The CRC CI research project 2003-029-C ‘Maintenance Cost Prediction for Road’ developed a method for assessing variation and reliability in budget/cost estimates for road maintenance and rehabilitation. The method is based on probability-based reliable theory and statistical method. The next stage of the current project is to apply the developed method to predict maintenance/rehabilitation budgets/costs of large networks for strategic investment. The first task is to assess the variability of road data. This report presents initial results of the analysis in assessing the variability of road data. A case study of the analysis for dry non reactive soil is presented to demonstrate the concept in analysing the variability of road data for large road networks. In assessing the variability of road data, large road networks were categorised into categories with common characteristics according to soil and climatic conditions, pavement conditions, pavement types, surface types and annual average daily traffic. The probability distributions, statistical means, and standard deviation values of asset conditions and annual average daily traffic for each type were quantified. The probability distributions and the statistical information obtained in this analysis will be used to asset the variation and reliability in budget/cost estimates in later stage. Generally, we usually used mean values of asset data of each category as input values for investment analysis. The variability of asset data in each category is not taken into account. This analysis method demonstrated that it can be used for practical application taking into account the variability of road data in analysing large road networks for maintenance/rehabilitation investment analysis.
Resumo:
Thirty-five clients who had received counselling completed a letter to a friend describing in as much detail as possible what they had learned from counselling. The participants' written responses were analysed and classified using the Structure of Learning Outcomes (SOLO) taxonomy. The results suggested that an expanded SOLO offers a promising and exciting way to view the outcomes of counselling within a learning framework. If the SOLO taxonomy is found to be stable in subsequent research, and clients are easily able to be classified using the taxonomy, then this approach may have implications for the process of counselling. To maximise the learning outcomes, counsellors could use strategies and techniques to enhance their clients' learning.
Resumo:
SEM observations of the aqueous suspensions of kaolinite from Birdwood (South Australia) and Georgia (USA) show noticeable differences in number of physical behaviour which has been explained by different microstructure constitution.. Birdwood kaolinite dispersion gels are observed at very low solid loadings in comparison with Georgia KGa-1 kaolinite dispersions which remain fluid at higher solids loading. To explain this behaviour, the specific particle interactions of Birdwood kaolinite, different from interaction in Georgia kaolinite have been proposed. These interactions may be brought about by the presence of nano-bubbles on clay crystal edges and may force clay particles to aggregate by bubble coalescence. This explains the predominance of stair step edge-edge like (EE) contacts in suspension of Birdwood kaolinite. Such EE linked particles build long strings that form a spacious cell structure. Hydrocarbon contamination of colloidal kaolinite particles and low aspect ratio are discussed as possible explanations of this unusual behaviour of Birdwood kaolinite. In Georgia KGa-1 kaolinite dispersions instead of EE contact between platelets displayed in Birdwood kaolinite, most particles have edge to face (EF) contacts building a cardhouse structure. Such an arrangement is much less voluminous in comparison with the Birdwood kaolinite cellular honeycomb structure observed previously in smectite aqueous suspensions. Such structural characteristics of KGa-1 kaolinite particles enable higher solid volume fractions pulps to form before significantly networked gel consistency is attained.
Resumo:
Reinforced concrete structures are susceptible to a variety of deterioration mechanisms due to creep and shrinkage, alkali-silica reaction (ASR), carbonation, and corrosion of the reinforcement. The deterioration problems can affect the integrity and load carrying capacity of the structure. Substantial research has been dedicated to these various mechanisms aiming to identify the causes, reactions, accelerants, retardants and consequences. This has improved our understanding of the long-term behaviour of reinforced concrete structures. However, the strengthening of reinforced concrete structures for durability has to date been mainly undertaken after expert assessment of field data followed by the development of a scheme to both terminate continuing degradation, by separating the structure from the environment, and strengthening the structure. The process does not include any significant consideration of the residual load-bearing capacity of the structure and the highly variable nature of estimates of such remaining capacity. Development of performance curves for deteriorating bridge structures has not been attempted due to the difficulty in developing a model when the input parameters have an extremely large variability. This paper presents a framework developed for an asset management system which assesses residual capacity and identifies the most appropriate rehabilitation method for a given reinforced concrete structure exposed to aggressive environments. In developing the framework, several industry consultation sessions have been conducted to identify input data required, research methodology and output knowledge base. Capturing expert opinion in a useable knowledge base requires development of a rule based formulation, which can subsequently be used to model the reliability of the performance curve of a reinforced concrete structure exposed to a given environment.
Resumo:
Generally, major public funding is invested in civil infrastructure assets. The efficiency and comfort level of expected and actual living standards is largely dependant on the management strategies of these assets. Buildings are one of the major & vital assets, which need to be maintained primarily to ensure their functionality by effective & efficient delivery of services and to optimise economic benefits. In Australia, billions of dollars are spent annually managing and maintaining built assets. These assets make up the social and economic infrastructure, which facilitate the essential services to public and business. Buildings are one of the prime & fundamental assets, which need to be managed effectively and efficiently to ensure that related services are delivered economically and sustainably