845 resultados para Assembly Rules
Resumo:
Cover-title.
Resumo:
Description based on: 1897.
Resumo:
Description based on: 1883-4.
Resumo:
Description based on: 1883-4.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
This paper presents the concepts of the intelligent system for aiding of the module assembly technology. The first part of this paper presents a project of intelligent support system for computer aided assembly process planning. The second part includes a coincidence description of the chosen aspects of implementation of this intelligent system using technologies of artificial intelligence (artificial neural networks, fuzzy logic, expert systems and genetic algorithms).
Resumo:
Hevea brasiliensis (Willd. Ex Adr. Juss.) Muell.-Arg. is the primary source of natural rubber that is native to the Amazon rainforest. The singular properties of natural rubber make it superior to and competitive with synthetic rubber for use in several applications. Here, we performed RNA sequencing (RNA-seq) of H. brasiliensis bark on the Illumina GAIIx platform, which generated 179,326,804 raw reads on the Illumina GAIIx platform. A total of 50,384 contigs that were over 400 bp in size were obtained and subjected to further analyses. A similarity search against the non-redundant (nr) protein database returned 32,018 (63%) positive BLASTx hits. The transcriptome analysis was annotated using the clusters of orthologous groups (COG), gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Pfam databases. A search for putative molecular marker was performed to identify simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). In total, 17,927 SSRs and 404,114 SNPs were detected. Finally, we selected sequences that were identified as belonging to the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways, which are involved in rubber biosynthesis, to validate the SNP markers. A total of 78 SNPs were validated in 36 genotypes of H. brasiliensis. This new dataset represents a powerful information source for rubber tree bark genes and will be an important tool for the development of microsatellites and SNP markers for use in future genetic analyses such as genetic linkage mapping, quantitative trait loci identification, investigations of linkage disequilibrium and marker-assisted selection.
Resumo:
Wormlike micelles formed by the addition to cetyltrimethylammonium bromide (CTAB) of a range of aromatic cosolutes with small molecular variations in their structure were systematically studied. Phenol and derivatives of benzoate and cinnamate were used, and the resulting mixtures were studied by oscillatory, steady-shear rheology, and the microstructure was probed by small-angle neutron scattering. The lengthening of the micelles and their entanglement result in remarkable viscoelastic properties, making rheology a useful tool to assess the effect of structural variations of the cosolutes on wormlike micelle formation. For a fixed concentration of CTAB and cosolute (200 mmol L(-1)), the relaxation time decreases in the following order: phenol > cinnamate> o-hydroxycinnamate > salicylate > o-methoxycinnamate > benzoate > o-methoxybenzoate. The variations in viscoelastic response are rationalized by using Mulliken population analysis to map out the electronic density of the cosolutes and quantify the barrier to rotation of specific groups on the aromatics. We find that the ability of the group attached to the aromatic ring to rotate is crucial in determining the packing of the cosolute at the micellar interface and thus critically impacts the micellar growth and, in turn, the rheological response. These results enable us for the first time to propose design rules for the self-assembly of the surfactants and cosolutes resulting in the formation of wormlike micelles with the cationic surfactant CTAB.
Resumo:
The layer-by-layer technique has been used as a powerful method to produce multilayer thin films with tunable properties. When natural polymers are employed, complicated phenomena such as self-aggregation and fibrilogenesis can occur, making it more difficult to obtain and characterize high-quality films. The weak acid and base character of such materials provides multilayer systems that may differ from those found with synthetic polymers due to strong self-organization effects. Specifically, LbL films prepared with chitosan and silk fibroin (SF) often involve the deposition of fibroin fibrils, which can influence the assembly process, surface properties, and overall film functionality. In this case, one has the intriguing possibility of realizing multilayer thin films with aligned nanofibers. In this article, we propose a strategy to control fibroin fibril formation by adjusting the assembly partner. Aligned fibroin fibrils were formed when chitosan was used as the counterpart, whereas no fibrils were observed when poly(allylamine hydrochloride) (PAH) was used. Charge density, which is higher in PAH, apparently stabilizes SF aggregates on the nanometer scale, thereby preventing their organization into fibrils. The drying step between the deposition of each layer was also crucial for film formation, as it stabilizes the SF molecules. Preliminary cell studies with optimized multilayers indicated that cell viability of NIH-3T3 fibroblasts remained between 90 and 100% after surface seeding, showing the potential application of the films in the biomedical field, as coatings and functional surfaces.
Resumo:
We report first-principles calculations on the electronic and structural properties of chemically functionalized adamantane molecules, either in isolated or crystalline forms. Boron and nitrogen functionalized molecules, aza-, tetra-aza-, bora-, and tetra-bora-adamantane, were found to be very stable in terms of energetics, consistent with available experimental data. Additionally, a hypothetical molecular crystal in a zincblende structure, involving the pair tetra-bora-adamantane and tetra-aza-adamantane, was investigated. This molecular crystal presented a direct and large electronic band gap and a bulk modulus of 20 GPa. The viability of using those functionalized molecules as fundamental building blocks for nanostructure self-assembly is discussed.
Resumo:
We use QCD sum rules (QCDSR) to calculate the width of the radiative decay of the meson X(3872), assumed to be a mixture between charmonium and exotic molecular [c (q) over bar][q (c) over bar] states with J(PC) = 1(++). We find that in a small range for the values of the mixing angle, 5 degrees <= theta <= 13 degrees, we get the branching ratio Gamma(X -> J/psi gamma)/Gamma(X -> J/psi pi(+)pi(-)) = 0.19 +/- 0.13, which is in agreement, with the experimental value. This result is compatible with the analysis of the mass and decay width of the mode J/psi(n pi) performed in the same approach.
Resumo:
We evaluate the mass of the B(s0) scalar meson and the coupling constant in the B(s0)BK vertex in the framework of QCD sum rules. We consider the B(s0) as a tetraquark state to evaluate its mass. We get m(Bs0) = (5.85 +/- 0.13) GeV, which is in agreement, considering the uncertainties, with predictions supposing it as a b (s) over bar state or a B (K) over bar bound state with J(P) = 0(+). To evaluate the g(Bs0BK) coupling, we use the three-point correlation functions of the vertex, considering B(s0) as a normal b (s) over bar state. The obtained coupling constant is: g(Bs0BK) = (16.3 +/- 3.2) GeV. This number is in agreement with light-cone QCD sum rules calculation. We have also compared the decay width of the B(s0) -> BK process considering the B(s0) to be a b (s) over bar state and a BK molecular state. The width obtained for the BK molecular state is twice as big as the width obtained for the b (s) over bar state. Therefore, we conclude that with the knowledge of the mass and the decay width of the B(s0) meson, one can discriminate between the different theoretical proposals for its structure.
Resumo:
We use QCD sum rules to test the nature of the meson X(3872), assumed to be a mixture between charmonium and exotic molecular [c (q) over bar][q (c) over bar] states with J(PC) = 1(++). We find that there is only a small range for the values of the mixing angle theta that can provide simultaneously good agreement with the experimental value of the mass and the decay width, and this range is 5(0) <= theta <= 3(0). In this range we get m(X) = (3.77 +/- 0.18) GeV and Gamma(X -> J/psi pi(+)pi(-)) = (9.3 +/- 6.9) MeV, which are compatible, within the errors, with the experimental values. We, therefore, conclude that the X(3872) is approximately 97% a charmonium state with 3% admixture of similar to 88% D(0)D*(0) molecule and similar to 12% D(+)D*(-) molecule.
Resumo:
We investigate the widths of the recently observed charmonium like resonances X(3872), Z(4430), and Z(2)(4250) using QCD sum rules. Extending previous analyses regarding these states as diquark-antiquark states or molecules of D mesons, we introduce the Breit-Wigner function in the pole term. We find that introducing the width increases the mass at the small Borel window region. Using the operator-product expansion up to dimension 8, we find that the sum rules based on interpolating current with molecular components give a stable Borel curve from which both the masses and widths of these resonances can be well obtained. Thus the QCD sum rule approach strongly favors the molecular description of these states.