953 resultados para Artificial Intelligence, Constraint Programming, set variables, representation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: p. 84-85.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine breakdowns are one of the main sources of disruption and throughput fluctuation in highly automated production facilities. One element in reducing this disruption is ensuring that the maintenance team responds correctly to machine failures. It is, however, difficult to determine the current practice employed by the maintenance team, let alone suggest improvements to it. 'Knowledge based improvement' is a methodology that aims to address this issue, by (a) eliciting knowledge on current practice, (b) evaluating that practice and (c) looking for improvements. The methodology, based on visual interactive simulation and artificial intelligence methods, and its application to a Ford engine assembly facility are described. Copyright © 2002 Society of Automotive Engineers, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the main problems for computer design of materials, which would have predefined properties, with the use of artificial intelligence methods are presented. The DB on inorganic compound properties and the system of DBs on materials for electronics with completely assessed information: phase diagram DB of material systems with semiconducting phases and DB on acousto-optical, electro-optical, and nonlinear optical properties are considered. These DBs are a source of information for data analysis. Using the DBs and artificial intelligence methods we have predicted thousands of new compounds in ternary, quaternary and more complicated chemical systems and estimated some of their properties (crystal structure type, melting point, homogeneity region etc.). The comparison of our predictions with experimental data, obtained later, showed that the average reliability of predicted inorganic compounds exceeds 80%. The perspectives of computational material design with the use of artificial intelligence methods are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* This publication is partially supported by the KT-DigiCult-Bg project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beginning from 1991, Russian (initially Soviet) Association for Artificial Intelligence (RAAI) publishes the own journal ‘News of Artificial Intelligence’. The journal is founded on the initiative of the famous specialist in the field of Artificial Intelligence (AI), the first president of Soviet Association for Artificial Intelligence, the academician of Russian Academy of Natural Science (RANS), doctor of technical sciences (d.t.s.), professor D.A. Pospelov, which from 1991 up to 2001 was its main editor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract not available

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes the inner relations between classical sub-scheme probability and statistic probability, subjective probability and objective probability, prior probability and posterior probability, transition probability and probability of utility, and further analysis the goal, method, and its practical economic purpose which represent by these various probability from the perspective of mathematics, so as to deeply understand there connotation and its relation with economic decision making, thus will pave the route for scientific predication and decision making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the one hand, pesticides may be absorbed into the body orally, dermally, ocularly and by inhalation and the human exposure may be dietary, recreational and/or occupational where toxicity could be acute or chronic. On the other hand, the environmental fate and toxicity of the pesticide is contingent on the physico-chemical characteristics of pesticide, the soil composition and adsorption. Human toxicity is also dependent on the exposure time and individual’s susceptibility. Therefore, this work will focus on the development of an Artificial Intelligence based diagnosis support system to assess the pesticide toxicological risk to humanoid, built under a formal framework based on Logic Programming to knowledge representation and reasoning, complemented with an approach to computing grounded on Artificial Neural Networks. The proposed solution is unique in itself, once it caters for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in terms of a qualitative or quantitative setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A High-Performance Computing job dispatcher is a critical software that assigns the finite computing resources to submitted jobs. This resource assignment over time is known as the on-line job dispatching problem in HPC systems. The fact the problem is on-line means that solutions must be computed in real-time, and their required time cannot exceed some threshold to do not affect the normal system functioning. In addition, a job dispatcher must deal with a lot of uncertainty: submission times, the number of requested resources, and duration of jobs. Heuristic-based techniques have been broadly used in HPC systems, at the cost of achieving (sub-)optimal solutions in a short time. However, the scheduling and resource allocation components are separated, thus generates a decoupled decision that may cause a performance loss. Optimization-based techniques are less used for this problem, although they can significantly improve the performance of HPC systems at the expense of higher computation time. Nowadays, HPC systems are being used for modern applications, such as big data analytics and predictive model building, that employ, in general, many short jobs. However, this information is unknown at dispatching time, and job dispatchers need to process large numbers of them quickly while ensuring high Quality-of-Service (QoS) levels. Constraint Programming (CP) has been shown to be an effective approach to tackle job dispatching problems. However, state-of-the-art CP-based job dispatchers are unable to satisfy the challenges of on-line dispatching, such as generate dispatching decisions in a brief period and integrate current and past information of the housing system. Given the previous reasons, we propose CP-based dispatchers that are more suitable for HPC systems running modern applications, generating on-line dispatching decisions in a proper time and are able to make effective use of job duration predictions to improve QoS levels, especially for workloads dominated by short jobs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis is composed of a collection of works written in the period 2019-2022, whose aim is to find methodologies of Artificial Intelligence (AI) and Machine Learning to detect and classify patterns and rules in argumentative and legal texts. We define our approach “hybrid”, since we aimed at designing hybrid combinations of symbolic and sub-symbolic AI, involving both “top-down” structured knowledge and “bottom-up” data-driven knowledge. A first group of works is dedicated to the classification of argumentative patterns. Following the Waltonian model of argument and the related theory of Argumentation Schemes, these works focused on the detection of argumentative support and opposition, showing that argumentative evidences can be classified at fine-grained levels without resorting to highly engineered features. To show this, our methods involved not only traditional approaches such as TFIDF, but also some novel methods based on Tree Kernel algorithms. After the encouraging results of this first phase, we explored the use of a some emerging methodologies promoted by actors like Google, which have deeply changed NLP since 2018-19 — i.e., Transfer Learning and language models. These new methodologies markedly improved our previous results, providing us with best-performing NLP tools. Using Transfer Learning, we also performed a Sequence Labelling task to recognize the exact span of argumentative components (i.e., claims and premises), thus connecting portions of natural language to portions of arguments (i.e., to the logical-inferential dimension). The last part of our work was finally dedicated to the employment of Transfer Learning methods for the detection of rules and deontic modalities. In this case, we explored a hybrid approach which combines structured knowledge coming from two LegalXML formats (i.e., Akoma Ntoso and LegalRuleML) with sub-symbolic knowledge coming from pre-trained (and then fine-tuned) neural architectures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examines the state of audiovisual translation (AVT) in the aftermath of the COVID-19 emergency, highlighting new trends with regards to the implementation of AI technologies as well as their strengths, constraints, and ethical implications. It starts with an overview of the current AVT landscape, focusing on future projections about its evolution and its critical aspects such as the worsening working conditions lamented by AVT professionals – especially freelancers – in recent years and how they might be affected by the advent of AI technologies in the industry. The second chapter delves into the history and development of three AI technologies which are used in combination with neural machine translation in automatic AVT tools: automatic speech recognition, speech synthesis and deepfakes (voice cloning and visual deepfakes for lip syncing), including real examples of start-up companies that utilize them – or are planning to do so – to localize audiovisual content automatically or semi-automatically. The third chapter explores the many ethical concerns around these innovative technologies, which extend far beyond the field of translation; at the same time, it attempts to revindicate their potential to bring about immense progress in terms of accessibility and international cooperation, provided that their use is properly regulated. Lastly, the fourth chapter describes two experiments, testing the efficacy of the currently available tools for automatic subtitling and automatic dubbing respectively, in order to take a closer look at their perks and limitations compared to more traditional approaches. This analysis aims to help discerning legitimate concerns from unfounded speculations with regards to the AI technologies which are entering the field of AVT; the intention behind it is to humbly suggest a constructive and optimistic view of the technological transformations that appear to be underway, whilst also acknowledging their potential risks.