900 resultados para Artificial Intellicence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foi realizado levantamento da opinio dos mdicos que compareceram ao "XIV Congresso Brasileiro de Reproduo Humana", sob o ponto de vista tico, a respeito da fecundao artificial. Foram analisados os resultados, chegando-se a selecionar alguns itens comportamentais como preliminarmente aceitos. Prope-se a realizao de estudos mais profundos que objetivam abordar os vrios aspectos aceitos ou no pela sociedade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aedes albopictus were reared in different containers: a tree hole, a bamboo stump and an auto tire. The total times from egg hatching to adult emergence were of 19.6,27.3 and 37.5 days, respectively, according to the container. The first, second and third-instar larvae presented growth periods with highly similar durations. The fourth-instar larvae was longer than the others stages. The pupation time was longer than the fourth-instar larvae growth period. The temperature of the breeding sites studied, which was of 18&deg; C to 22&deg; C on average, was also taken into consideration. The mortality of the immature stages was analysed and compared as between the experimental groups; it was lower in the natural containers than in the discarded tire. The average wing length of adult females emerging from tree hole was significantly larger (p < 0.05) than that of those emerging from the tire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duas larvas de Aedes scapularis foram encontradas em um criadouro artificial, no Municpio de Sertaneja, Norte do Estado do Paran, Brasil, durante atividade de rotina para o controle de vetores da dengue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an artificial neural network approach for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. The accuracy of the wind power forecasting attained with the proposed approach is evaluated against persistence and ARIMA approaches, reporting the numerical results from a real-world case study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural networks execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural networks integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJETIVO: Avaliar as redes neurais recorrentes enquanto tcnica preditiva para sries temporais em sade. MTODOS: O estudo foi realizado durante uma epidemia de clera ocorrida no Estado do Cear, em 1993 e 1994, a partir da sobremortalidade tendo como causa bsica as infeces intestinais mal definidas (CID-9). O nmero mensal de bitos por essa causa, referente ao perodo de 1979 a 1995 no Estado do Cear, foram obtidos do Sistema de Informao de Mortalidade (SIM) do Ministrio da Sade. Estruturou-se uma rede com dois neurnios na camada de entrada, 12 na camada oculta, um neurnio na camada de sada e um na camada de memria. Todas as funes de ativao eram a funo logstica. O treinamento foi realizado pelo mtodo de backpropagation, com taxa de aprendizado de 0,01 e momentum de 0,9, com dados de janeiro de 1979 a junho de 1991. O critrio para fim do treinamento foi atingir 22.000 epochs. Compararam-se os resultados com os de um modelo de regresso binomial negativa. RESULTADOS: A predio da rede neural a mdio prazo foi adequada, em dezembro de 1993 e novembro e dezembro de 1994. O nmero de bitos registrados foi superior ao limite do intervalo de confiana. J o modelo regressivo detectou sobremortalidade a partir de maro de 1992. CONCLUSES: A rede neural se mostrou capaz de predio, principalmente no incio do perodo, como tambm ao detectar uma alterao concomitante e posterior ocorrncia da epidemia de clera. No entanto, foi menos precisa do que o modelo de regresso binomial, que se mostrou mais sensvel para detectar aberraes concomitantes circulao da clera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A temtica dos recifes artificiais multifuncionais relativamente recente, sendo que o primeiro recife artificial multifuncional construdo data do ano de 1999 (Perth, Austrlia). A palavra multifuncional est associada aos mltiplos propsitos que se podem atingir com a construo de uma estrutura destas, sendo eles, a proteo costeira, o aumento da biodiversidade local, a melhoria da qualidade das ondas para o Surf e a promoo do turismo ligado aos desportos de ondas. Para dar resposta a um caso de proteo costeira, na zona martima adjacente praia de Leirosa, Portugal, foi pensada uma construo de um recife artificial que funcione como obra de proteo do sistema dunar local e que, adicionalmente melhore as condies locais para a prtica de Surf. Este trabalho descreve a anlise de duas solues de recife (em forma de V, formando um ngulo de 45 e 66, entre si), atravs dos valores das caractersticas das ondas (altura, perodo e direo) e parmetros de surfabilidade (linha de rebentao, nmero de Iribarren e ngulo de rebentao), para uma gama alargada de condies de agitao frequente. Para tal, foi necessrio caracterizar a agitao martima, atravs do modelo numrico SWAN para determinao dos casos de agitao mais frequentes na zona martima adjacente ao local de implantao do recife e para, posteriormente, se proceder sua utilizao no modelo numrico DREAMS, que permitiu a simulao da propagao das ondas sobre o recife. A comparao dos resultados do modelo numrico DREAMS para as situaes de com e sem recife (para as duas solues de recife) permitiu avaliar a influncia do mesmo em termos de alturas de onda, linha de rebentao e ngulo de rebentao, tendo-se chegado a resultados satisfatrios do ponto de vista do melhoramento das condies locais para a prtica do Surf.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control Centre operators are essential to assure a good performance of Power Systems. Operators actions are critical in dealing with incidents, especially severe faults, like blackouts. In this paper we present an Intelligent Tutoring approach for training Portuguese Control Centre operators in incident analysis and diagnosis, and service restoration of Power Systems, offering context awareness and an easy integration in the working environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EPIA 2013 - XVI Portuguese Conference on Artificial Intelligence Angra do Herosmo, Azores, Portugal, 9 12 September.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento, Geografia (Ordenamento do Territrio), 25 de Novembro de 2013, Universidade dos Aores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obteno do grau de Mestre em Engenharia Mecnica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decision making in any environmental domain is a complex and demanding activity, justifying the development of dedicated decision support systems. Every decision is confronted with a large variety and amount of constraints to satisfy as well as contradictory interests that must be sensibly accommodated. The first stage of a project evaluation is its submission to the relevant group of public (and private) agencies. The individual role of each agency is to verify, within its domain of competence, the fulfilment of the set of applicable regulations. The scope of the involved agencies is wide and ranges from evaluation abilities on the technical or economical domains to evaluation competences on the environmental or social areas. The second project evaluation stage involves the gathering of the recommendations of the individual agencies and their justified merge to produce the final conclusion. The incorporation and accommodation of the consulted agencies opinions is of extreme importance: opinions may not only differ, but can be interdependent, complementary, irreconcilable or, simply, independent. The definition of adequate methodologies to sensibly merge, whenever possible, the existing perspectives while preserving the overall legality of the system, will lead to the making of sound justified decisions. The proposed Environmental Decision Support System models the project evaluation activity and aims to assist developers in the selection of adequate locations for their projects, guaranteeing their compliance with the applicable regulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.