947 resultados para Architectural metal-work
Resumo:
Includes bibliography.
Resumo:
Includes bibliography.
Resumo:
"This paper is an analysis of the data contained in a report of the ASME Research Committee on Plastic Flow of Metals entitled Rolling of metals."
Resumo:
Cover title: Scandinavian arts.
Resumo:
Architecture.--Sculpture.--Painting.--Metal work.--Ivory and wood carving.--Glass and pottery.--Textile fabrics.--Mosaic.
Resumo:
Includes index.
Resumo:
We synthesized nanoscale TiO2-RuO2 alloys by atomic layer deposition (ALD) that possess a high work function and are highly conductive. As such, they function as good Schottky contacts to extract photogenerated holes from n-type silicon while simultaneously interfacing with water oxidation catalysts. The ratio of TiO2 to RuO2 can be precisely controlled by the number of ALD cycles for each precursor. Increasing the composition above 16% Ru sets the electronic conductivity and the metal work function. No significant Ohmic loss for hole transport is measured as film thickness increases from 3 to 45 nm for alloy compositions >= 16% Ru. Silicon photoanodes with a 2 nm SiO2 layer that are coated by these alloy Schottky contacts having compositions in the range of 13-46% Ru exhibit average photovoltages of 525 mV, with a maximum photovoltage of 570 mV achieved. Depositing TiO2-RuO2 alloys on nSi sets a high effective work function for the Schottky junction with the semiconductor substrate, thus generating a large photovoltage that is isolated from the properties of an overlying oxygen evolution catalyst or protection layer.
Resumo:
Students in the Sheet Metal Department at the New York Trade School are shown working on ductwork in a classroom at the school. Black and white photograph.
Resumo:
A class of sheet metal students are shown working in this black and white photograph.
Resumo:
A view of students at work in a classroom in the Sheet Metal Department at the New York Trade School. Black and white photograph.
Resumo:
The present work aims to study the microstructure and mechanical properties of titanium alloys, widely used in the manufacture of orthopedic implants in order to compare a new manufacturing technology of implants, rapid prototyping in metals with conventional manufacturing processes. Rapid prototyping is being used in many areas of human knowledge to assist in the study and often in the manufacture of components for their own use. Nowadays with the advancement of software and equipment such as computed tomography and magnetic resonance imaging, we can reproduce any part of the human body in three-dimensional images with great perfection and it is used in the reproduction of implants, scaffolds, material aid and preparation in surgery. This work aims to do: A comparison between the microstructure of the alloy in the two manufacturing processes (prototyping and conventional), showing the grain size, the nature, form, quantity, and distribution of various ingredients or certain inclusions and study of mechanical properties of titanium in both cases.
Resumo:
Mode of access: Internet.
Resumo:
Volume II published: London : David Bogue, 1851.