959 resultados para Arc flash hazards
Resumo:
The unique properties of graphene and carbon nanotubes made them the most promising nanomaterials attracting enormous attention, due to the prospects for applications in various nanodevices, from nanoelectronics to sensors and energy conversion devices. Here we report on a novel deterministic, single-step approach to simultaneous production and magnetic separation of graphene flakes and carbon nanotubes in an arc discharge by splitting the high-temperature growth and low-temperature separation zones using a non-uniform magnetic field and tailor-designed catalyst alloy, and depositing nanotubes and graphene in different areas. Our results are very relevant to the development of commercially-viable, single-step production of bulk amounts of high-quality graphene.
Resumo:
The ability to control the properties of single-wall nanotubes (SWNTs) produced in the arc discharge is important for many practical applications. Our experiments suggest that the length of SWNTs significantly increases (up to 4000 nm), along with the purity of the carbon deposit, when the magnetic field is applied to arc discharge. Scanning electron microscopy and transmission electron microscopy analyses have demonstrated that the carbon deposit produced in the magnetic-field-enhanced arc mainly consists of the isolated and bunched SWNTs. A model of a carbon nanotube interaction and growth in the thermal plasma was developed, which considers several important effects such as anode ablation that supplies the carbon plasma in an anodic arc discharge technique, and the momentum, charge, and energy transfer processes between nanotube and plasma. It is shown that the nanotube charge with respect to the plasma as well as nanotube length depend on plasma density and electric field in the interelectrode gap. For instance, nanotube charge changes from negative to positive value with an electron density decrease. The numerical simulations based on the Monte Carlo technique were performed, which explain an increase in the nanotubes produced in the magnetic-field-enhanced arc discharge. © 2008 American Institute of Physics.
Ways to increase the length of single wall carbon nanotubes in a magnetically enhanced arc discharge
Resumo:
Ability to control the properties of single-wall nanotubes produced in the arc discharge is important for many practical applications. Our experiments suggest that the length and purity of single-wall nanotubes significantly increase when the magnetic field is applied to the arc discharge. A model of a single wall carbon nanotube interaction and growth in the thermal plasma was developed which considers several important effects such as anode ablation that supplies the carbon plasma in an anodic arc discharge technique, and the momentum, charge and energy transfer processes between nanotube and plasma. The numerical simulations based on Monte-Carlo technique were performed, which explain an increase of the nanotubes produced in the magnetic field - enhanced arc discharge.
Resumo:
Since 1995 the eruption of the andesitic Soufrière Hills Volcano (SHV), Montserrat, has been studied in substantial detail. As an important contribution to this effort, the Seismic Experiment with Airgunsource-Caribbean Andesitic Lava Island Precision Seismo-geodetic Observatory (SEA-CALIPSO) experiment was devised to image the arc crust underlying Montserrat, and, if possible, the magma system at SHV using tomography and reflection seismology. Field operations were carried out in October–December 2007, with deployment of 238 seismometers on land supplementing seven volcano observatory stations, and with an array of 10 ocean-bottom seismometers deployed offshore. The RRS James Cook on NERC cruise JC19 towed a tuned airgun array plus a digital 48-channel streamer on encircling and radial tracks for 77 h about Montserrat during December 2007, firing 4414 airgun shots and yielding about 47 Gb of data. The main objecctives of the experiment were achieved. Preliminary analyses of these data published in 2010 generated images of heterogeneous high-velocity bodies representing the cores of volcanoes and subjacent intrusions, and shallow areas of low velocity on the flanks of the island that reflect volcaniclastic deposits and hydrothermal alteration. The resolution of this preliminary work did not extend beyond 5 km depth. An improved three-dimensional (3D) seismic velocity model was then obtained by inversion of 181 665 first-arrival travel times from a more-complete sampling of the dataset, yielding clear images to 7.5 km depth of a low-velocity volume that was interpreted as the magma chamber which feeds the current eruption, with an estimated volume 13 km3. Coupled thermal and seismic modelling revealed properties of the partly crystallized magma. Seismic reflection analyses aimed at imaging structures under southern Montserrat had limited success, and suggest subhorizontal layering interpreted as sills at a depth of between 6 and 19 km. Seismic reflection profiles collected offshore reveal deep fans of volcaniclastic debris and fault offsets, leading to new tectonic interpretations. This chapter presents the project goals and planning concepts, describes in detail the campaigns at sea and on land, summarizes the major results, and identifies the key lessons learned.
Resumo:
The influence of ion current density on the thickness of coatings deposited in a vacuum arc setup has been investigated to optimize the coating porosity. A planar probe was used to measure the ion current density distribution across plasma flux. A current density from 20 to 50 A/m2 was obtained, depending on the probe position relative to the substrate center. TiN coatings were deposited onto the cutting inserts placed at different locations on the substrate, and SEM was used to characterize the surfaces of the coatings. It was found that lowdensity coatings were formed at the decreased ion current density. A quantitative dependence of the coating thickness on the ion current density in the range of 20-50 A/m2 were obtained for the films deposited at substrate bias of 200 V and nitrogen pressure 0.1 Pa, and the coating porosity was calculated. The coated cutting inserts were tested by lathe machining of the martensitic stainless steel AISI 431. The results may be useful for controlling ion flux distribution over large industrial-scale substrates.
Resumo:
The Centre for Accident Research and Road Safety – Queensland (CARRS-Q) is conducting a 3-year program of research, titled Integrating Technological and Organisational Approaches to Enhance the Safety of Roadworkers. The program is funded by the Australian Research Council (ARC), with support from industry partners Leighton Contractors, GHD, Queensland Transport and Main Roads (TMR), and the Australian Workers Union (AWU). This multidisciplinary project involves working together to enhance roadworker safety by: • Investigating the real and perceived dangers at roadworks. • Strengthening organisational policies and practices for roadworker safety. • Testing innovative initiatives to improve driver behaviour at roadworks. • Developing safety management models spanning different regulatory frameworks. The project outcomes will include the following benefits: • Practical and theoretical contributions at industry and academic levels for developing effective interventions/strategies to improve safety in road construction. • Development of new measures to evaluate effectiveness of policy and organisational interventions to produce behavioural change among organisations involved in roadworks. • Improved safety and productivity in urban and rural areas of Australia as a result of facilitating the delivery of road improvements. This paper presents an overview of the research conducted to date as part of the overall program. The paper concentrates on issues relevant to moving vehicles, although the research recognises the importance of other hazards and risks associated with roadworks and construction projects generally.
Resumo:
Governments, authorities, and organisations dedicate significant resources to encourage communities to prepare for and respond to natural hazards such as cyclones, earthquakes, floods, and bushfires. However, recent events, media attention, and ongoing academic research continue to highlight cases of non-compliance including swift water rescues. Individuals who fail to comply with instructions issued during natural hazards significantly impede the emergency response because they divert resources to compliance-enforcement and risk the lives of emergency service workers who may be required to assist them. An initial investigation of the field suggests several assumptions or practices that influence emergency management policy, communication strategy, and community behaviours during natural hazards: 1) that community members will comply with instructions issued by governments and agencies that represent the most authoritative voice, 2) that communication campaigns are shaped by intuition rather than evidence-based approaches (Wood et al., 2012), and 3) that emergency communication is linear and directional. This extended abstract represents the first stage of a collaborative research project that integrates industry and cross-disciplinary perspectives to provide evidence-based approaches for emergency and risk communication during the response and recovery phases of a natural hazard. Specifically, this abstract focuses on the approach taken and key elements that will form the development of a typology of compliance-gaining messages during the response phase of natural hazards, which will be the focus of the conference presentation.
Resumo:
Lack of detailed and accurate safety records on incidents in Australian work zones prevents a thorough understanding of the relevant risks and hazards. Consequently it is difficult to select appropriate treatments for improving the safety of roadworkers and motorists alike. This paper presents a method for making informed decisions about safety treatments by 1) identifying safety issues and hazards in work zones, 2) understanding the attitudes and perceptions of both roadworkers and motorists, 3) reviewing the effectiveness of work zone safety treatments according to existing research, and 4) incorporating local expert opinion on the feasibility and usefulness of the safety treatments. Using data collected through semi-structured interviews with roadwork personnel and online surveys of Queensland drivers, critical safety issues were identified. The effectiveness of treatments for addressing the issues was understood through rigorous literature review and consultations with local road authorities. Promising work zone safety treatments include enforcement, portable rumble strips, perceptual measures to imply reduced lane width, automated or remotely-operated traffic lights, end of queue measures, and more visible and meaningful signage.
Resumo:
"Eight people are dead and there are grave fears the toll may rise with at least 70 missing after flash floods swept through southeastern Queensland."
Resumo:
Defectivity has been historically identified as a leading technical roadblock to the implementation of nanoimprint lithography for semiconductor high volume manufacturing. The lack of confidence in nanoimprint's ability to meet defect requirements originates in part from the industry's past experiences with 1 × lithography and the shortage in enduser generated defect data. SEMATECH has therefore initiated a defect assessment aimed at addressing these concerns. The goal is to determine whether nanoimprint, specifically Jet and Flash Imprint Lithography from Molecular Imprints, is capable of meeting semiconductor industry defect requirements. At this time, several cycles of learning have been completed in SEMATECH's defect assessment, with promising results. J-FIL process random defectivity of < 0.1 def/cm2 has been demonstrated using a 120nm half-pitch template, providing proof of concept that a low defect nanoimprint process is possible. Template defectivity has also improved significantly as shown by a pre-production grade template at 80nm pitch. Cycles of learning continue on feature sizes down to 22nm. © 2011 SPIE.
Resumo:
Tunable charge-trapping behaviors including unipolar charge trapping of one type of charge carrier and ambipolar trapping of both electrons and holes in a complementary manner is highly desirable for low power consumption multibit flash memory design. Here, we adopt a strategy of tuning the Fermi level of reduced graphene oxide (rGO) through self-assembled monolayer (SAM) functionalization and form p-type and n-type doped rGO with a wide range of manipulation on work function. The functionalized rGO can act as charge-trapping layer in ambipolar flash memories, and a dramatic transition of charging behavior from unipolar trapping of electrons to ambipolar trapping and eventually to unipolar trapping of holes was achieved. Adjustable hole/electron injection barriers induce controllable Vth shift in the memory transistor after programming operation. Finally, we transfer the ambipolar memory on flexible substrates and study their charge-trapping properties at various bending cycles. The SAM-functionalized rGO can be a promising candidate for next-generation nonvolatile memories.
Resumo:
Lack of detailed and accurate safety records on incidents in Australian work zones prevents a thorough understanding of the relevant risks and hazards. Consequently it is difficult to select appropriate treatments for improving the safety of roadworkers and motorists alike. This paper outlines development of a conceptual framework for making informed decisions about safety treatments by: 1) identifying safety issues and hazards in work zones; 2) understanding the attitudes and perceptions of both roadworkers and motorists; 3) reviewing the effectiveness of work zone safety treatments according to existing research, and; 4) incorporating local expert opinion on the feasibility and usefulness of the safety treatments. Using data collected through semi-structured interviews with roadwork personnel and online surveys of Queensland drivers, critical safety issues were identified. The effectiveness of treatments for addressing the issues was understood through rigorous literature review and consultations with local road authorities. Promising work zone safety treatments include enforcement, portable rumble strips, perceptual measures to imply reduced lane width, automated or remotely-operated traffic lights, end of queue measures, and more visible and meaningful signage.
Resumo:
"The much-anticipated second collection from the 2007 winner of the Thomas Shapcott Prize. Charged with fierce imagination and swift lyricism, Holland-Batt’s cosmopolitan poems reflect a predatory world rife with hazards both real and imagined. Opening with a vision of a leveret’s agonising death by myxomatosis and closing with a lover disappearing into dangerous waters, this collection careens through diverse geographical territory – from haunted post-colonial landscapes in Australia to brutal animal hierarchies in the cloud forests of Nicaragua. Engaging everywhere with questions of violence and loss, erasure and extinction, The Hazards inhabits unsettling terrain, unafraid to veer straight into turbulence."--Publisher website
Resumo:
The past decade has seen an increase in the occurrence of natural hazards and the experience in Australia has led to a reconsideration of the planning for natural hazards by government and to the adoption of a whole-of-nation resilience-based approach to disaster management. A key component of creating community resilience is the integration of disaster management with government and community strategic planning in relation to the social, built, economic and natural environments. Joint responsibility of government and the community for ‘land use planning systems and building control arrangements [which] reduce, as far as is practicable, community exposure to unreasonable risks from known hazards’, is a critical element of a resilient community. As the responsibility for the implementation of land use planning policies in Australia is generally with local governments, this paper will examine whether, in light of improved predictive technology, the failure of a local government to adequately foresee and make provision for a known hazard will give rise to liability for damage or loss of property caused by that hazard.