991 resultados para Application technology
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Each year, there is an increase in pesticide consumption and in its importance of use in the large-scale agricultural production, being fundamental the knowledge of application technology to the activity success. The objective of the present study was to evaluate the influence of working pressure on the drift generated by different spray nozzles, assessed in wind tunnel. The treatments were composed of two spray nozzles AXI 110015 and AXI 11002 with pressure levels of 276 and 414 kPa. The spray solution was composed by water and NaCl at 10%. The applications were conducted at wind speed of 2.0 m s-1, being the drift collected at 5.0; 10.0 and 15.0 m away from the spray boom and at heights of 0.2; 0.4; 0.6; 0.8 e 1.0 m from the tunnel floor. To both spray nozzles, the greatest drift was collected at the smallest distance to the spray-boom and at the lowest height. The AXI 11002 nozzle gave a smaller drift relative to the AXI 110015 nozzle for the two tested pressures and for all the collection points. Regardless of the nozzle, a rise in the working pressure increases the spray drift percentage at all distances in the wind tunnel.
Resumo:
The objective of the present study was to analyze the influence of spray mixture volume and flight height on herbicide deposition in aerial applications on pastures. The experimental plots were arranged in a pasture area in the district of Porto Esperidião (Mato Grosso, Brazil). In all of the treatments, the applications contained the herbicides aminopyralid and fluroxypyr (Dominum) at the dose of 2.5 L c.p. ha-1, including the adjuvant mineral oil (Joint Oil) at the dose of 1.0 L and a tracer to determine the deposition by high-performance liquid chromatography (HPLC) (rhodamine at a concentration of 0.6%). The experiment consisted of nine treatments that comprised the combinations of three spray volumes (20, 30 and 50 L ha-1) and three flight heights (10, 30 and 40 m). The results showed that, on average, there was a tendency for larger deposits for the smallest flight heights, with a significant difference between the heights of 10 and 40 m. There was no significant difference among the deposits obtained with the different spray mixture volumes.
Resumo:
The air included in droplets generated by spray nozzles directly int0erferes in transport, deposition and retention of the droplets after its impact on the target. The objective of this study was to analyze the interference of adjuvants in the amount of air included in droplets generated by spray nozzles. The treatments were composed by four spray solutions containing mineral oil, vegetable oil, surfactant and water, and three spray nozzles, two air induction type and one pre-orifice. The air included was calculated by the difference between the volume of spray mix (air plus liquid) and only the liquid, which was made by means of sprayed samples captured in a funnel and collected in a graduated cylinder. The surface tension was estimated by the gravimetric method using a precision scale and a graduated pipette. The surfactant provided the largest percentage of air included in the spray. For the surface tension, the mineral oil and the surfactant had the lowest values. It was concluded that the use of adjuvants had a direct influence on the percentage of air included. In addition, products with greater ability to reduce surface tension and to form homogeneous solutions provided the increase in the percentage of air included in the droplet.
Resumo:
The air-assisted ground spray is fairly widespread. However, due to the unpredictable weather conditions, the operational efficiency is impaired by stops on grounds of low humidity and high temperatures. The aim of this work was to assess an air humidification method and evaluate its impact on temperature and air humidity for the air curtain of the air-assisted sprayer. With respect to relative air humidity, it has increased in 6.59%, being the maximum change when inserting 1.92 L min-1. So, it is concluded that the pipeline humidification might significantly reduce temperature and enhance air humidity. The treatments performed in this study consisted of a varied flow of a humidity device, related to weather conditions. Temperature and relative air humidity were measured at 1.0 m height from right to left of middle point of the machine, corresponding to the end of the spray boom, in the middle and end of right spray boom. The readings were also performed at three different distances from the end of the pipeline and at 0.25 and 0.50 m from that to the soil. The results show that 0.48 L min-1 in the humidification system has promoted a better efficiency in reducing air-temperature, on average 2.52 ºC when compared to the non-humidified one.